自然频率的性盆腔推力。

IF 2.1 3区 生物学 Q1 ZOOLOGY
Joseph Nehme-Haily, Luping Yin, Veronica Diaz, Dayu Lin, David L Hu
{"title":"自然频率的性盆腔推力。","authors":"Joseph Nehme-Haily, Luping Yin, Veronica Diaz, Dayu Lin, David L Hu","doi":"10.1093/icb/icaf135","DOIUrl":null,"url":null,"abstract":"<p><p>Seventy % of mammals copulate using repeated pelvic thrusting, while the transfer of sperm requires just a single intromission. Why did thrusting evolve to be the dominant form of sexual intercourse? In this study, we investigate how the rate of sexual pelvic thrusting changes with body size. By analyzing films of copulating mammals, from mice Mus musculus to elephants Elephantidae, we find that bigger animals thrust slower. The rate of pelvic thrusting decreases from 6 Hz for the pocket mouse Pergonathus to 1.3-1.8 Hz for humans to an absence of thrusting for the rhino Rhinocerotidae and elephant Elephantidae families. To understand this dependence on body size, we consider the spring-like behavior of the legs, which is associated with the elasticity of the body's muscles, tendons, and ligaments. For both running and thrusting, a maximum amplitude and great energy savings can be achieved if the system is oscillated at its resonant or natural frequency. Resonant frequencies, as measured through previous studies of running in dogs Canis familiaris and horses Equus ferus caballus, show good agreement with sexual thrusting frequencies. Running and sexual thrusting have nothing in common from a behavioral perspective, but from a physical perspective, they are both constrained by the same musculoskeletal systems, and both take advantage of resonance. Our findings may provide improved treatments for human sexual dysfunction as well as improving breeding strategies for domestic mammals.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural frequencies in sexual pelvic thrusting.\",\"authors\":\"Joseph Nehme-Haily, Luping Yin, Veronica Diaz, Dayu Lin, David L Hu\",\"doi\":\"10.1093/icb/icaf135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Seventy % of mammals copulate using repeated pelvic thrusting, while the transfer of sperm requires just a single intromission. Why did thrusting evolve to be the dominant form of sexual intercourse? In this study, we investigate how the rate of sexual pelvic thrusting changes with body size. By analyzing films of copulating mammals, from mice Mus musculus to elephants Elephantidae, we find that bigger animals thrust slower. The rate of pelvic thrusting decreases from 6 Hz for the pocket mouse Pergonathus to 1.3-1.8 Hz for humans to an absence of thrusting for the rhino Rhinocerotidae and elephant Elephantidae families. To understand this dependence on body size, we consider the spring-like behavior of the legs, which is associated with the elasticity of the body's muscles, tendons, and ligaments. For both running and thrusting, a maximum amplitude and great energy savings can be achieved if the system is oscillated at its resonant or natural frequency. Resonant frequencies, as measured through previous studies of running in dogs Canis familiaris and horses Equus ferus caballus, show good agreement with sexual thrusting frequencies. Running and sexual thrusting have nothing in common from a behavioral perspective, but from a physical perspective, they are both constrained by the same musculoskeletal systems, and both take advantage of resonance. Our findings may provide improved treatments for human sexual dysfunction as well as improving breeding strategies for domestic mammals.</p>\",\"PeriodicalId\":54971,\"journal\":{\"name\":\"Integrative and Comparative Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative and Comparative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/icb/icaf135\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icaf135","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

70%的哺乳动物通过反复的骨盆推力进行交配,而精子的转移只需要一次插入。为什么刺入会进化成主要的性交方式?在这项研究中,我们调查了性盆腔插入的速度如何随着体型的变化而变化。通过分析哺乳动物交配的录像,从老鼠小家鼠到大象象科,我们发现体型较大的动物推力较慢。盆腔推力的频率从口袋鼠Pergonathus的6赫兹下降到人类的1.3-1.8赫兹,犀牛和大象象科没有推力。为了理解这种对身体大小的依赖,我们考虑腿的类似弹簧的行为,这与身体肌肉、肌腱和韧带的弹性有关。对于运行和推力,如果系统在其谐振频率或固有频率上振荡,则可以实现最大振幅和极大的节能。通过先前对狗狗(Canis familiaris)和马(Equus ferus caballus)跑步的研究测量出的共振频率与性推入频率非常吻合。从行为的角度来看,跑步和性交没有任何共同之处,但从身体的角度来看,它们都受到相同的肌肉骨骼系统的约束,都利用了共振。我们的研究结果可能为改善人类性功能障碍的治疗方法以及改善家养哺乳动物的繁殖策略提供帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Natural frequencies in sexual pelvic thrusting.

Seventy % of mammals copulate using repeated pelvic thrusting, while the transfer of sperm requires just a single intromission. Why did thrusting evolve to be the dominant form of sexual intercourse? In this study, we investigate how the rate of sexual pelvic thrusting changes with body size. By analyzing films of copulating mammals, from mice Mus musculus to elephants Elephantidae, we find that bigger animals thrust slower. The rate of pelvic thrusting decreases from 6 Hz for the pocket mouse Pergonathus to 1.3-1.8 Hz for humans to an absence of thrusting for the rhino Rhinocerotidae and elephant Elephantidae families. To understand this dependence on body size, we consider the spring-like behavior of the legs, which is associated with the elasticity of the body's muscles, tendons, and ligaments. For both running and thrusting, a maximum amplitude and great energy savings can be achieved if the system is oscillated at its resonant or natural frequency. Resonant frequencies, as measured through previous studies of running in dogs Canis familiaris and horses Equus ferus caballus, show good agreement with sexual thrusting frequencies. Running and sexual thrusting have nothing in common from a behavioral perspective, but from a physical perspective, they are both constrained by the same musculoskeletal systems, and both take advantage of resonance. Our findings may provide improved treatments for human sexual dysfunction as well as improving breeding strategies for domestic mammals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
7.70%
发文量
150
审稿时长
6-12 weeks
期刊介绍: Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信