Luis Muñoz, Peter McLoone, Peter Metcalfe, Anatoly B Rosenfeld, Giordano Biasi
{"title":"评估Monaco 6.2.2在匹配LINACs的复杂放疗中的应用:使用虚拟源模型2.0改进MLC建模和剂量准确性。","authors":"Luis Muñoz, Peter McLoone, Peter Metcalfe, Anatoly B Rosenfeld, Giordano Biasi","doi":"10.1007/s13246-025-01602-5","DOIUrl":null,"url":null,"abstract":"<p><p>This study assesses the updated Monaco TPS virtual source model (VSM) 2.0, which removes multileaf collimator (MLC) and jaw characterization as editable factors from the MLC geometry section within Monaco. The focus is on the impact of changes to stereotactic radiotherapy (SRT) cases for spinal and intracranial treatments for two beam matched linear accelerators. A validated custom VSM 1.6 model optimized for SRT was compared with the Elekta Accelerated Go Live 6 MV flattening filter-free (FFF) and VSM 2.0. Evaluations included measured MLC characteristics with a high-resolution detector, measured output factors (OPF), ion chamber fields in the thorax phantom, and recalculations of clinically relevant SRT cases. VSM 2.0 improves MLC modelling. Ion chamber measurements for IAEA TD1583 measurements were found to be within expected tolerances. Gamma pass rates for two matched LINACs evidenced improvement at 1%, 1 mm and 10% threshold for single and multi-SRS brain and SABR Spine treatments. VSM 2.0 represents a meaningful advancement in beam modelling within a Monte Carlo-based TPS environment, offering improved dosimetric performance and operational simplicity. Commercially available detectors were used to demonstrate that VSM 2.0 enhances agility MLC modelling, supporting more precise SRT and SABR delivery for matched LINACs. Removing configurable dependencies from the beam model will result in more consistent high quality beam models, an improves workflows for commissioning of the Monaco TPS.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Monaco 6.2.2 in complex radiotherapy across matched LINACs: improved MLC modelling and dose accuracy with virtual source model 2.0.\",\"authors\":\"Luis Muñoz, Peter McLoone, Peter Metcalfe, Anatoly B Rosenfeld, Giordano Biasi\",\"doi\":\"10.1007/s13246-025-01602-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study assesses the updated Monaco TPS virtual source model (VSM) 2.0, which removes multileaf collimator (MLC) and jaw characterization as editable factors from the MLC geometry section within Monaco. The focus is on the impact of changes to stereotactic radiotherapy (SRT) cases for spinal and intracranial treatments for two beam matched linear accelerators. A validated custom VSM 1.6 model optimized for SRT was compared with the Elekta Accelerated Go Live 6 MV flattening filter-free (FFF) and VSM 2.0. Evaluations included measured MLC characteristics with a high-resolution detector, measured output factors (OPF), ion chamber fields in the thorax phantom, and recalculations of clinically relevant SRT cases. VSM 2.0 improves MLC modelling. Ion chamber measurements for IAEA TD1583 measurements were found to be within expected tolerances. Gamma pass rates for two matched LINACs evidenced improvement at 1%, 1 mm and 10% threshold for single and multi-SRS brain and SABR Spine treatments. VSM 2.0 represents a meaningful advancement in beam modelling within a Monte Carlo-based TPS environment, offering improved dosimetric performance and operational simplicity. Commercially available detectors were used to demonstrate that VSM 2.0 enhances agility MLC modelling, supporting more precise SRT and SABR delivery for matched LINACs. Removing configurable dependencies from the beam model will result in more consistent high quality beam models, an improves workflows for commissioning of the Monaco TPS.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-025-01602-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01602-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
本研究评估了更新的摩纳哥TPS虚拟源模型(VSM) 2.0,该模型从摩纳哥的MLC几何部分中删除了多叶准直器(MLC)和下颌特征作为可编辑因素。重点是改变立体定向放疗(SRT)的情况下,脊柱和颅内治疗的两个束匹配线性加速器的影响。针对SRT优化的定制VSM 1.6模型与Elekta Accelerated Go Live 6 MV平坦化无滤波器(FFF)和VSM 2.0进行了比较。评估包括用高分辨率检测器测量的MLC特征、测量的输出因子(OPF)、胸腔幻象中的离子室场,以及临床相关SRT病例的重新计算。VSM 2.0改进了MLC建模。原子能机构TD1583测量的离子室测量结果在预期的公差范围内。两个匹配的LINACs的伽玛通过率在单和多srs脑和SABR脊柱治疗的1%、1mm和10%阈值下得到改善。VSM 2.0代表了在蒙特卡洛TPS环境中光束建模的有意义的进步,提供了改进的剂量学性能和操作简单性。商用检测器用于证明VSM 2.0增强了MLC建模的灵活性,支持更精确的SRT和SABR交付匹配的LINACs。从光束模型中去除可配置的依赖项将产生更一致的高质量光束模型,并改善摩纳哥TPS调试的工作流程。
Evaluating Monaco 6.2.2 in complex radiotherapy across matched LINACs: improved MLC modelling and dose accuracy with virtual source model 2.0.
This study assesses the updated Monaco TPS virtual source model (VSM) 2.0, which removes multileaf collimator (MLC) and jaw characterization as editable factors from the MLC geometry section within Monaco. The focus is on the impact of changes to stereotactic radiotherapy (SRT) cases for spinal and intracranial treatments for two beam matched linear accelerators. A validated custom VSM 1.6 model optimized for SRT was compared with the Elekta Accelerated Go Live 6 MV flattening filter-free (FFF) and VSM 2.0. Evaluations included measured MLC characteristics with a high-resolution detector, measured output factors (OPF), ion chamber fields in the thorax phantom, and recalculations of clinically relevant SRT cases. VSM 2.0 improves MLC modelling. Ion chamber measurements for IAEA TD1583 measurements were found to be within expected tolerances. Gamma pass rates for two matched LINACs evidenced improvement at 1%, 1 mm and 10% threshold for single and multi-SRS brain and SABR Spine treatments. VSM 2.0 represents a meaningful advancement in beam modelling within a Monte Carlo-based TPS environment, offering improved dosimetric performance and operational simplicity. Commercially available detectors were used to demonstrate that VSM 2.0 enhances agility MLC modelling, supporting more precise SRT and SABR delivery for matched LINACs. Removing configurable dependencies from the beam model will result in more consistent high quality beam models, an improves workflows for commissioning of the Monaco TPS.