{"title":"西兰花对大脑的作用:萝卜硫素的神经保护机制综述。","authors":"Riley N Bessetti, Karen A Litwa","doi":"10.3389/fncel.2025.1601366","DOIUrl":null,"url":null,"abstract":"<p><p>Sulforaphane, a phytochemical abundant in the sprouts of cruciferous vegetables, protects plants during a critical period of development. Through sulforaphane's ability to activate the mammalian Nuclear Factor Erythroid 2-related Factor 2 (NRF2) pathway, these beneficial properties extend beyond plants. Our current review explores emerging neuroprotective mechanisms of sulforaphane and their relation to neurological disorders. Primarily, we discuss the ability of sulforaphane to mitigate oxidative stress and prevent neuroinflammation. Given sulforaphane's ability to activate multiple cytoprotective mechanisms, sulforaphane is emerging as a promising therapeutic for multiple neurodegenerative and neurodevelopmental disorders. In this review, we highlight current clinical trials in neurological disorders and conclude by discussing therapeutic opportunities and challenges for sulforaphane. Together, preclinical models and clinical trials highlight emerging themes of sulforaphane-mediated neuroprotection, including hormetic responses that depend upon the cell/tissue, neurological condition, insult, and developmental stage. In particular, low sulforaphane doses consistently exhibit beneficial effects in preclinical neuronal cell cultures models and avoid cytotoxic effects of higher sulforaphane doses. These factors will be important considerations in informing therapeutic use of sulforaphane.</p>","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"19 ","pages":"1601366"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271217/pdf/","citationCount":"0","resultStr":"{\"title\":\"Broccoli for the brain: a review of the neuroprotective mechanisms of sulforaphane.\",\"authors\":\"Riley N Bessetti, Karen A Litwa\",\"doi\":\"10.3389/fncel.2025.1601366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sulforaphane, a phytochemical abundant in the sprouts of cruciferous vegetables, protects plants during a critical period of development. Through sulforaphane's ability to activate the mammalian Nuclear Factor Erythroid 2-related Factor 2 (NRF2) pathway, these beneficial properties extend beyond plants. Our current review explores emerging neuroprotective mechanisms of sulforaphane and their relation to neurological disorders. Primarily, we discuss the ability of sulforaphane to mitigate oxidative stress and prevent neuroinflammation. Given sulforaphane's ability to activate multiple cytoprotective mechanisms, sulforaphane is emerging as a promising therapeutic for multiple neurodegenerative and neurodevelopmental disorders. In this review, we highlight current clinical trials in neurological disorders and conclude by discussing therapeutic opportunities and challenges for sulforaphane. Together, preclinical models and clinical trials highlight emerging themes of sulforaphane-mediated neuroprotection, including hormetic responses that depend upon the cell/tissue, neurological condition, insult, and developmental stage. In particular, low sulforaphane doses consistently exhibit beneficial effects in preclinical neuronal cell cultures models and avoid cytotoxic effects of higher sulforaphane doses. These factors will be important considerations in informing therapeutic use of sulforaphane.</p>\",\"PeriodicalId\":12432,\"journal\":{\"name\":\"Frontiers in Cellular Neuroscience\",\"volume\":\"19 \",\"pages\":\"1601366\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271217/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Cellular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncel.2025.1601366\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncel.2025.1601366","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Broccoli for the brain: a review of the neuroprotective mechanisms of sulforaphane.
Sulforaphane, a phytochemical abundant in the sprouts of cruciferous vegetables, protects plants during a critical period of development. Through sulforaphane's ability to activate the mammalian Nuclear Factor Erythroid 2-related Factor 2 (NRF2) pathway, these beneficial properties extend beyond plants. Our current review explores emerging neuroprotective mechanisms of sulforaphane and their relation to neurological disorders. Primarily, we discuss the ability of sulforaphane to mitigate oxidative stress and prevent neuroinflammation. Given sulforaphane's ability to activate multiple cytoprotective mechanisms, sulforaphane is emerging as a promising therapeutic for multiple neurodegenerative and neurodevelopmental disorders. In this review, we highlight current clinical trials in neurological disorders and conclude by discussing therapeutic opportunities and challenges for sulforaphane. Together, preclinical models and clinical trials highlight emerging themes of sulforaphane-mediated neuroprotection, including hormetic responses that depend upon the cell/tissue, neurological condition, insult, and developmental stage. In particular, low sulforaphane doses consistently exhibit beneficial effects in preclinical neuronal cell cultures models and avoid cytotoxic effects of higher sulforaphane doses. These factors will be important considerations in informing therapeutic use of sulforaphane.
期刊介绍:
Frontiers in Cellular Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the cellular mechanisms underlying cell function in the nervous system across all species. Specialty Chief Editors Egidio D‘Angelo at the University of Pavia and Christian Hansel at the University of Chicago are supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.