Hadi Mehdizavareh, Arijit Khan, Simon Lebech Cichosz
{"title":"通过不规则时间序列分层建模增强ICU患者血糖水平预测。","authors":"Hadi Mehdizavareh, Arijit Khan, Simon Lebech Cichosz","doi":"10.1016/j.csbj.2025.06.039","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately predicting blood glucose (BG) levels of ICU patients is critical, as both hypoglycemia (BG < 70 mg/dL) and hyperglycemia (BG > 180 mg/dL) are associated with increased morbidity and mortality. This study presents a proof-of-concept machine learning framework, the Multi-source Irregular Time-Series Transformer (MITST), designed to predict BG levels in ICU patients. In contrast to existing methods that rely heavily on manual feature engineering or utilize limited Electronic Health Record (EHR) data sources, MITST integrates diverse clinical data-including laboratory results, medications, and vital signs-without predefined aggregation. The model leverages a hierarchical Transformer architecture, designed to capture interactions among features within individual timestamps, temporal dependencies across different timestamps, and semantic relationships across multiple data sources. Evaluated using the extensive eICU database (200,859 ICU stays across 208 hospitals), MITST achieves a statistically significant ( <math><mi>p</mi> <mo><</mo> <mn>0.001</mn></math> ) average improvement of 1.7 percentage points (pp) in AUROC and 1.8 pp in AUPRC over a state-of-the-art random forest baseline. Crucially, for hypoglycemia-a rare but life-threatening condition-MITST increases sensitivity by 7.2 pp, potentially enabling hundreds of earlier interventions across ICU populations. The flexible architecture of MITST allows seamless integration of new data sources without retraining the entire model, enhancing its adaptability for clinical decision support. While this study focuses on predicting BG levels, we also demonstrate MITST's ability to generalize to a distinct clinical task (in-hospital mortality prediction), highlighting its potential for broader applicability in ICU settings. MITST thus offers a robust and extensible solution for analyzing complex, multi-source, irregular time-series data.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"2898-2914"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12270796/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing glucose level prediction of ICU patients through hierarchical modeling of irregular time-series.\",\"authors\":\"Hadi Mehdizavareh, Arijit Khan, Simon Lebech Cichosz\",\"doi\":\"10.1016/j.csbj.2025.06.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurately predicting blood glucose (BG) levels of ICU patients is critical, as both hypoglycemia (BG < 70 mg/dL) and hyperglycemia (BG > 180 mg/dL) are associated with increased morbidity and mortality. This study presents a proof-of-concept machine learning framework, the Multi-source Irregular Time-Series Transformer (MITST), designed to predict BG levels in ICU patients. In contrast to existing methods that rely heavily on manual feature engineering or utilize limited Electronic Health Record (EHR) data sources, MITST integrates diverse clinical data-including laboratory results, medications, and vital signs-without predefined aggregation. The model leverages a hierarchical Transformer architecture, designed to capture interactions among features within individual timestamps, temporal dependencies across different timestamps, and semantic relationships across multiple data sources. Evaluated using the extensive eICU database (200,859 ICU stays across 208 hospitals), MITST achieves a statistically significant ( <math><mi>p</mi> <mo><</mo> <mn>0.001</mn></math> ) average improvement of 1.7 percentage points (pp) in AUROC and 1.8 pp in AUPRC over a state-of-the-art random forest baseline. Crucially, for hypoglycemia-a rare but life-threatening condition-MITST increases sensitivity by 7.2 pp, potentially enabling hundreds of earlier interventions across ICU populations. The flexible architecture of MITST allows seamless integration of new data sources without retraining the entire model, enhancing its adaptability for clinical decision support. While this study focuses on predicting BG levels, we also demonstrate MITST's ability to generalize to a distinct clinical task (in-hospital mortality prediction), highlighting its potential for broader applicability in ICU settings. MITST thus offers a robust and extensible solution for analyzing complex, multi-source, irregular time-series data.</p>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"2898-2914\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12270796/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2025.06.039\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.06.039","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Enhancing glucose level prediction of ICU patients through hierarchical modeling of irregular time-series.
Accurately predicting blood glucose (BG) levels of ICU patients is critical, as both hypoglycemia (BG < 70 mg/dL) and hyperglycemia (BG > 180 mg/dL) are associated with increased morbidity and mortality. This study presents a proof-of-concept machine learning framework, the Multi-source Irregular Time-Series Transformer (MITST), designed to predict BG levels in ICU patients. In contrast to existing methods that rely heavily on manual feature engineering or utilize limited Electronic Health Record (EHR) data sources, MITST integrates diverse clinical data-including laboratory results, medications, and vital signs-without predefined aggregation. The model leverages a hierarchical Transformer architecture, designed to capture interactions among features within individual timestamps, temporal dependencies across different timestamps, and semantic relationships across multiple data sources. Evaluated using the extensive eICU database (200,859 ICU stays across 208 hospitals), MITST achieves a statistically significant ( ) average improvement of 1.7 percentage points (pp) in AUROC and 1.8 pp in AUPRC over a state-of-the-art random forest baseline. Crucially, for hypoglycemia-a rare but life-threatening condition-MITST increases sensitivity by 7.2 pp, potentially enabling hundreds of earlier interventions across ICU populations. The flexible architecture of MITST allows seamless integration of new data sources without retraining the entire model, enhancing its adaptability for clinical decision support. While this study focuses on predicting BG levels, we also demonstrate MITST's ability to generalize to a distinct clinical task (in-hospital mortality prediction), highlighting its potential for broader applicability in ICU settings. MITST thus offers a robust and extensible solution for analyzing complex, multi-source, irregular time-series data.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology