骨关节炎中软骨退化的关键见解和意义。

IF 2.1 4区 医学 Q3 CELL BIOLOGY
Connective Tissue Research Pub Date : 2025-09-01 Epub Date: 2025-07-21 DOI:10.1080/03008207.2025.2536153
Lucienne A Vonk
{"title":"骨关节炎中软骨退化的关键见解和意义。","authors":"Lucienne A Vonk","doi":"10.1080/03008207.2025.2536153","DOIUrl":null,"url":null,"abstract":"<p><p>Progressive degradation of articular cartilage is characteristic of osteoarthritis (OA), but OA is more than a wear-and-tear disease of the cartilage. It is a complex, multifactorial disease affecting all joint tissues, amplified by local and systemic inflammation. Chondrocytes play a crucial role in cartilage homeostasis and various molecular pathways that leading to their catabolic state have been identified. Cartilage degradation fragments and direct exposure of chondrocytes to extracellular matrix molecules provide feedback loops that further stimulate the catabolic profile. Synovial inflammation and subchondral bone changes enhance cartilage degradation by changing the joint environment, secreting pro-inflammatory cytokines and proteolytic enzymes, and attracting immune cells. The heterogeneity of the disease is underscored by the recognition on various phenotypes and endotypes, although consensus on classification of subtypes is lacking. In the last 25 years, we have learned that timely treatment of joint injuries and repairing the meniscus are the best options to delay cartilage degradation and the development of post-traumatic OA. In addition, clinical studies have shown that cartilage thickness can be restored, but it does not necessarily provide clinical improvements. So far, there is no disease modifying OA drug (DMOAD) available. The development of DMOADs is partially hindered by the requirement of long preclinical and clinical studies, as cartilage degradation is a slow process. Availability of biomarkers as surrogate endpoint could accelerate the development. Biomarker panels for early diagnosis and patient stratification could also advance the field. Currently emerging treatment approaches, such as using regenerative medicine, promising for successful treatment.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"393-398"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Key insights and implications of cartilage degradation in osteoarthritis.\",\"authors\":\"Lucienne A Vonk\",\"doi\":\"10.1080/03008207.2025.2536153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Progressive degradation of articular cartilage is characteristic of osteoarthritis (OA), but OA is more than a wear-and-tear disease of the cartilage. It is a complex, multifactorial disease affecting all joint tissues, amplified by local and systemic inflammation. Chondrocytes play a crucial role in cartilage homeostasis and various molecular pathways that leading to their catabolic state have been identified. Cartilage degradation fragments and direct exposure of chondrocytes to extracellular matrix molecules provide feedback loops that further stimulate the catabolic profile. Synovial inflammation and subchondral bone changes enhance cartilage degradation by changing the joint environment, secreting pro-inflammatory cytokines and proteolytic enzymes, and attracting immune cells. The heterogeneity of the disease is underscored by the recognition on various phenotypes and endotypes, although consensus on classification of subtypes is lacking. In the last 25 years, we have learned that timely treatment of joint injuries and repairing the meniscus are the best options to delay cartilage degradation and the development of post-traumatic OA. In addition, clinical studies have shown that cartilage thickness can be restored, but it does not necessarily provide clinical improvements. So far, there is no disease modifying OA drug (DMOAD) available. The development of DMOADs is partially hindered by the requirement of long preclinical and clinical studies, as cartilage degradation is a slow process. Availability of biomarkers as surrogate endpoint could accelerate the development. Biomarker panels for early diagnosis and patient stratification could also advance the field. Currently emerging treatment approaches, such as using regenerative medicine, promising for successful treatment.</p>\",\"PeriodicalId\":10661,\"journal\":{\"name\":\"Connective Tissue Research\",\"volume\":\" \",\"pages\":\"393-398\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Connective Tissue Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03008207.2025.2536153\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connective Tissue Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2025.2536153","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:关节软骨进行性退化是骨关节炎(OA)的特征,但OA不仅仅是软骨的磨损性疾病。重大发现:这是一种复杂的、影响所有关节组织的多因素疾病,可因局部和全身炎症而放大。软骨细胞在软骨稳态中起着至关重要的作用,并且已经确定了导致其分解代谢状态的各种分子途径。软骨降解碎片和软骨细胞直接暴露于细胞外基质分子提供反馈回路,进一步刺激分解代谢谱。滑膜炎症和软骨下骨改变通过改变关节环境、分泌促炎细胞因子和蛋白水解酶以及吸引免疫细胞来促进软骨降解。尽管对亚型的分类缺乏共识,但对各种表型和内型的认识强调了疾病的异质性。经验教训:在过去的25年里,我们了解到及时治疗关节损伤和修复半月板是延缓软骨退化和创伤后OA发展的最佳选择。此外,临床研究表明,软骨厚度可以恢复,但并不一定能提供临床改善。知识差距和障碍:到目前为止,还没有疾病调节型OA药物(DMOAD)可用。由于软骨降解是一个缓慢的过程,长期的临床前和临床研究的要求在一定程度上阻碍了DMOADs的发展。生物标志物作为替代终点的可用性可以加速发展。用于早期诊断和患者分层的生物标志物面板也可以推动该领域的发展。展望:目前新兴的治疗方法,如使用再生医学,有望成功治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Key insights and implications of cartilage degradation in osteoarthritis.

Progressive degradation of articular cartilage is characteristic of osteoarthritis (OA), but OA is more than a wear-and-tear disease of the cartilage. It is a complex, multifactorial disease affecting all joint tissues, amplified by local and systemic inflammation. Chondrocytes play a crucial role in cartilage homeostasis and various molecular pathways that leading to their catabolic state have been identified. Cartilage degradation fragments and direct exposure of chondrocytes to extracellular matrix molecules provide feedback loops that further stimulate the catabolic profile. Synovial inflammation and subchondral bone changes enhance cartilage degradation by changing the joint environment, secreting pro-inflammatory cytokines and proteolytic enzymes, and attracting immune cells. The heterogeneity of the disease is underscored by the recognition on various phenotypes and endotypes, although consensus on classification of subtypes is lacking. In the last 25 years, we have learned that timely treatment of joint injuries and repairing the meniscus are the best options to delay cartilage degradation and the development of post-traumatic OA. In addition, clinical studies have shown that cartilage thickness can be restored, but it does not necessarily provide clinical improvements. So far, there is no disease modifying OA drug (DMOAD) available. The development of DMOADs is partially hindered by the requirement of long preclinical and clinical studies, as cartilage degradation is a slow process. Availability of biomarkers as surrogate endpoint could accelerate the development. Biomarker panels for early diagnosis and patient stratification could also advance the field. Currently emerging treatment approaches, such as using regenerative medicine, promising for successful treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Connective Tissue Research
Connective Tissue Research 生物-细胞生物学
CiteScore
6.60
自引率
3.40%
发文量
37
审稿时长
2 months
期刊介绍: The aim of Connective Tissue Research is to present original and significant research in all basic areas of connective tissue and matrix biology. The journal also provides topical reviews and, on occasion, the proceedings of conferences in areas of special interest at which original work is presented. The journal supports an interdisciplinary approach; we present a variety of perspectives from different disciplines, including Biochemistry Cell and Molecular Biology Immunology Structural Biology Biophysics Biomechanics Regenerative Medicine The interests of the Editorial Board are to understand, mechanistically, the structure-function relationships in connective tissue extracellular matrix, and its associated cells, through interpretation of sophisticated experimentation using state-of-the-art technologies that include molecular genetics, imaging, immunology, biomechanics and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信