用于细胞裂解的微孔径表面声波发生器

IF 9.1
Droplet Pub Date : 2025-06-11 DOI:10.1002/dro2.70015
Gonzalo Almanza, Ricardo M. Trujillo, Diego Sánchez-Saldaña, Øystein Røsand, Morten Høydal, Maria Fernandino, Carlos A. Dorao
{"title":"用于细胞裂解的微孔径表面声波发生器","authors":"Gonzalo Almanza,&nbsp;Ricardo M. Trujillo,&nbsp;Diego Sánchez-Saldaña,&nbsp;Øystein Røsand,&nbsp;Morten Høydal,&nbsp;Maria Fernandino,&nbsp;Carlos A. Dorao","doi":"10.1002/dro2.70015","DOIUrl":null,"url":null,"abstract":"<p>The breakage of the cellular membrane for releasing intracellular material is the starting point for several diagnostics or treatment processes. Surface acoustic waves can provide a novel and chemical-free approach by inducing acoustic streaming generating high shear stress inside a droplet containing cells. However, the power required to achieve an efficient cell lysis can lead to the displacement of the droplet and even the nebulization of the droplet. This effect is aggravated as the droplet size is reduced. In this work, we demonstrate the possibility overcoming the mentioned issue by a micro-size aperture surface acoustic wave generator operating at high frequency. By reducing the aperture of the surface acoustic wave generator to a fraction of the diameter of the deposited droplet, the localized acoustic streaming can lead to high shear stress while not exceeding the adhesion force of the droplet preventing droplet motion or nebulization. This concept can lyse AC16 human cardiomyocyte cells with efficiencies of 80% comparable to a chemical lysis method in 60 s of exposure time.</p>","PeriodicalId":100381,"journal":{"name":"Droplet","volume":"4 3","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.70015","citationCount":"0","resultStr":"{\"title\":\"Micro-size aperture surface acoustic wave generator for cell lysis\",\"authors\":\"Gonzalo Almanza,&nbsp;Ricardo M. Trujillo,&nbsp;Diego Sánchez-Saldaña,&nbsp;Øystein Røsand,&nbsp;Morten Høydal,&nbsp;Maria Fernandino,&nbsp;Carlos A. Dorao\",\"doi\":\"10.1002/dro2.70015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The breakage of the cellular membrane for releasing intracellular material is the starting point for several diagnostics or treatment processes. Surface acoustic waves can provide a novel and chemical-free approach by inducing acoustic streaming generating high shear stress inside a droplet containing cells. However, the power required to achieve an efficient cell lysis can lead to the displacement of the droplet and even the nebulization of the droplet. This effect is aggravated as the droplet size is reduced. In this work, we demonstrate the possibility overcoming the mentioned issue by a micro-size aperture surface acoustic wave generator operating at high frequency. By reducing the aperture of the surface acoustic wave generator to a fraction of the diameter of the deposited droplet, the localized acoustic streaming can lead to high shear stress while not exceeding the adhesion force of the droplet preventing droplet motion or nebulization. This concept can lyse AC16 human cardiomyocyte cells with efficiencies of 80% comparable to a chemical lysis method in 60 s of exposure time.</p>\",\"PeriodicalId\":100381,\"journal\":{\"name\":\"Droplet\",\"volume\":\"4 3\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dro2.70015\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Droplet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/dro2.70015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Droplet","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dro2.70015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞膜破裂以释放细胞内物质是许多诊断或治疗过程的起点。表面声波可以提供一种新颖的、无化学物质的方法,通过诱导声流在含有细胞的液滴内产生高剪切应力。然而,实现高效细胞裂解所需的功率可能导致液滴的位移,甚至液滴的雾化。这种影响随着液滴尺寸的减小而加剧。在这项工作中,我们证明了通过在高频下工作的微孔径表面声波发生器克服上述问题的可能性。通过将表面声波发生器的孔径减小到沉积液滴直径的一小部分,局部声流可以在不超过液滴粘附力的情况下导致高剪切应力,从而防止液滴运动或雾化。这个概念可以在60秒的暴露时间内裂解AC16人心肌细胞,与化学裂解方法相比,效率为80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Micro-size aperture surface acoustic wave generator for cell lysis

Micro-size aperture surface acoustic wave generator for cell lysis

The breakage of the cellular membrane for releasing intracellular material is the starting point for several diagnostics or treatment processes. Surface acoustic waves can provide a novel and chemical-free approach by inducing acoustic streaming generating high shear stress inside a droplet containing cells. However, the power required to achieve an efficient cell lysis can lead to the displacement of the droplet and even the nebulization of the droplet. This effect is aggravated as the droplet size is reduced. In this work, we demonstrate the possibility overcoming the mentioned issue by a micro-size aperture surface acoustic wave generator operating at high frequency. By reducing the aperture of the surface acoustic wave generator to a fraction of the diameter of the deposited droplet, the localized acoustic streaming can lead to high shear stress while not exceeding the adhesion force of the droplet preventing droplet motion or nebulization. This concept can lyse AC16 human cardiomyocyte cells with efficiencies of 80% comparable to a chemical lysis method in 60 s of exposure time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信