集中式多式联运系统中一种具有去噪扩散隐式的时空大语言模型

IF 7.6 1区 工程技术 Q1 TRANSPORTATION SCIENCE & TECHNOLOGY
Zhiqi Shao , Haoning Xi , Haohui Lu , Ze Wang , Michael G.H. Bell , Junbin Gao
{"title":"集中式多式联运系统中一种具有去噪扩散隐式的时空大语言模型","authors":"Zhiqi Shao ,&nbsp;Haoning Xi ,&nbsp;Haohui Lu ,&nbsp;Ze Wang ,&nbsp;Michael G.H. Bell ,&nbsp;Junbin Gao","doi":"10.1016/j.trc.2025.105249","DOIUrl":null,"url":null,"abstract":"<div><div>Centralized multimodal transport systems face significant challenges due to data isolation, missing values, and heterogeneous spatial–temporal features, which hinder accurate prediction in traffic flow and travel demand. To address these challenges, we propose Spatial–Temporal Large Language Model with Denoising Diffusion Implicit (STLLM-DF), an innovative which integrates a Spatial–Temporal Denoising Diffusion Implicit Model (ST-DDIM) with a Spatial–Temporal Large Language Model (ST-LLM) to improve the predictions in traffic flow and travel demand in multimodal transport systems. The ST-DDIM effectively learns data distributions to recover noisy and incomplete data, while the ST-LLM captures complex spatial–temporal dependencies across multimodal networks, eliminating manual feature engineering. Extensive experiments conducted on ten real-world datasets from Sydney demonstrate that STLLM-DF consistently outperforms baseline models in both single-task and multi-task predictions (e.g., ), while consistently excelling in short-term and long-term predictions. On average, STLLM-DF achieves improvements in Mean Absolute Error (MAE) by 2.40%, Root Mean Square Error (RMSE) by 4.50%, and Mean Absolute Percentage Error (MAPE) by 1.51%. Furthermore, we evaluate the noise tolerance of STLLM-DF, demonstrating its robust performance under data imperfections. This paper presents a scalable, data-driven solution for managing multimodal transport systems, offering actionable insights for transport regulators.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":"179 ","pages":"Article 105249"},"PeriodicalIF":7.6000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A spatial–Temporal Large Language Model with Denoising Diffusion Implicit for predictions in centralized multimodal transport systems\",\"authors\":\"Zhiqi Shao ,&nbsp;Haoning Xi ,&nbsp;Haohui Lu ,&nbsp;Ze Wang ,&nbsp;Michael G.H. Bell ,&nbsp;Junbin Gao\",\"doi\":\"10.1016/j.trc.2025.105249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Centralized multimodal transport systems face significant challenges due to data isolation, missing values, and heterogeneous spatial–temporal features, which hinder accurate prediction in traffic flow and travel demand. To address these challenges, we propose Spatial–Temporal Large Language Model with Denoising Diffusion Implicit (STLLM-DF), an innovative which integrates a Spatial–Temporal Denoising Diffusion Implicit Model (ST-DDIM) with a Spatial–Temporal Large Language Model (ST-LLM) to improve the predictions in traffic flow and travel demand in multimodal transport systems. The ST-DDIM effectively learns data distributions to recover noisy and incomplete data, while the ST-LLM captures complex spatial–temporal dependencies across multimodal networks, eliminating manual feature engineering. Extensive experiments conducted on ten real-world datasets from Sydney demonstrate that STLLM-DF consistently outperforms baseline models in both single-task and multi-task predictions (e.g., ), while consistently excelling in short-term and long-term predictions. On average, STLLM-DF achieves improvements in Mean Absolute Error (MAE) by 2.40%, Root Mean Square Error (RMSE) by 4.50%, and Mean Absolute Percentage Error (MAPE) by 1.51%. Furthermore, we evaluate the noise tolerance of STLLM-DF, demonstrating its robust performance under data imperfections. This paper presents a scalable, data-driven solution for managing multimodal transport systems, offering actionable insights for transport regulators.</div></div>\",\"PeriodicalId\":54417,\"journal\":{\"name\":\"Transportation Research Part C-Emerging Technologies\",\"volume\":\"179 \",\"pages\":\"Article 105249\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part C-Emerging Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968090X25002530\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X25002530","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

集中式多式联运系统由于数据的孤立性、缺失值和异质性时空特征,阻碍了对交通流量和出行需求的准确预测,因此面临着巨大的挑战。为了解决这些挑战,我们提出了带有去噪扩散隐式的时空大语言模型(STLLM-DF),该模型将时空去噪扩散隐式模型(ST-DDIM)与时空大语言模型(ST-LLM)相结合,以改进多式联运系统中交通流量和出行需求的预测。ST-DDIM有效地学习数据分布以恢复有噪声和不完整的数据,而ST-LLM捕获跨多模态网络的复杂时空依赖关系,从而消除了手动特征工程。在悉尼的10个真实数据集上进行的大量实验表明,STLLM-DF在单任务和多任务预测(例如)方面始终优于基线模型,同时在短期和长期预测方面始终表现出色。平均而言,STLLM-DF的平均绝对误差(MAE)提高了2.40%,均方根误差(RMSE)提高了4.50%,平均绝对百分比误差(MAPE)提高了1.51%。此外,我们评估了STLLM-DF的噪声容忍能力,证明了它在数据不完善的情况下的鲁棒性。本文提出了一种可扩展的、数据驱动的多式联运系统管理解决方案,为运输监管机构提供了可操作的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A spatial–Temporal Large Language Model with Denoising Diffusion Implicit for predictions in centralized multimodal transport systems
Centralized multimodal transport systems face significant challenges due to data isolation, missing values, and heterogeneous spatial–temporal features, which hinder accurate prediction in traffic flow and travel demand. To address these challenges, we propose Spatial–Temporal Large Language Model with Denoising Diffusion Implicit (STLLM-DF), an innovative which integrates a Spatial–Temporal Denoising Diffusion Implicit Model (ST-DDIM) with a Spatial–Temporal Large Language Model (ST-LLM) to improve the predictions in traffic flow and travel demand in multimodal transport systems. The ST-DDIM effectively learns data distributions to recover noisy and incomplete data, while the ST-LLM captures complex spatial–temporal dependencies across multimodal networks, eliminating manual feature engineering. Extensive experiments conducted on ten real-world datasets from Sydney demonstrate that STLLM-DF consistently outperforms baseline models in both single-task and multi-task predictions (e.g., ), while consistently excelling in short-term and long-term predictions. On average, STLLM-DF achieves improvements in Mean Absolute Error (MAE) by 2.40%, Root Mean Square Error (RMSE) by 4.50%, and Mean Absolute Percentage Error (MAPE) by 1.51%. Furthermore, we evaluate the noise tolerance of STLLM-DF, demonstrating its robust performance under data imperfections. This paper presents a scalable, data-driven solution for managing multimodal transport systems, offering actionable insights for transport regulators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.80
自引率
12.00%
发文量
332
审稿时长
64 days
期刊介绍: Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信