克服数据匮乏:基于微调神经网络和多传感器卫星图像融合的土壤湿度估算迁移学习框架

IF 8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Abhilash Singh , M. Niranjannaik , Kumar Gaurav
{"title":"克服数据匮乏:基于微调神经网络和多传感器卫星图像融合的土壤湿度估算迁移学习框架","authors":"Abhilash Singh ,&nbsp;M. Niranjannaik ,&nbsp;Kumar Gaurav","doi":"10.1016/j.engappai.2025.111636","DOIUrl":null,"url":null,"abstract":"<div><div>Training deep learning (DL) models requires extensive data, particularly for soil moisture prediction, where large volumes of in situ measurements are needed to prevent overfitting. To address this challenge, we propose a customised transfer learning framework that adapts a pre-trained DL model to a new study site with a different climate. Specifically, we fine-tune a fully connected feed-forward neural network, originally trained on a large dataset from a humid subtropical region (source domain), using limited data from a semi-arid region (target domain). The proposed framework leverages nine input features extracted and generated from Sentinel-1/2 and Shuttle Radar Topographic Mission (SRTM) images through a linear data fusion technique. We systematically evaluate the performance of the proposed framework against ten benchmark algorithms. We observed that the proposed framework outperforms all benchmark algorithms, achieving a correlation coefficient (R) of 0.81, a root mean square error (RMSE) of 0.05 <span><math><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>/</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>, and a bias of 0.02 <span><math><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>/</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> on the target domain. Particularly, this is achieved using 55% less in situ data compared to the source domain. To ensure reliability and robustness, we conduct comprehensive analyses, including error histogram, residual, uncertainty, spatial distribution, ablation, statistical, and complex time complexity analyses. Throughout each evaluation, the proposed framework consistently exhibits a reliable and robust performance. The findings of this study hold promise in facilitating accurate surface soil moisture estimation, particularly in data-scarce regions.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"159 ","pages":"Article 111636"},"PeriodicalIF":8.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overcoming data scarcity: A transfer learning framework with fine-tuned neural networks and multi-sensor satellite image fusion for soil moisture estimation\",\"authors\":\"Abhilash Singh ,&nbsp;M. Niranjannaik ,&nbsp;Kumar Gaurav\",\"doi\":\"10.1016/j.engappai.2025.111636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Training deep learning (DL) models requires extensive data, particularly for soil moisture prediction, where large volumes of in situ measurements are needed to prevent overfitting. To address this challenge, we propose a customised transfer learning framework that adapts a pre-trained DL model to a new study site with a different climate. Specifically, we fine-tune a fully connected feed-forward neural network, originally trained on a large dataset from a humid subtropical region (source domain), using limited data from a semi-arid region (target domain). The proposed framework leverages nine input features extracted and generated from Sentinel-1/2 and Shuttle Radar Topographic Mission (SRTM) images through a linear data fusion technique. We systematically evaluate the performance of the proposed framework against ten benchmark algorithms. We observed that the proposed framework outperforms all benchmark algorithms, achieving a correlation coefficient (R) of 0.81, a root mean square error (RMSE) of 0.05 <span><math><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>/</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span>, and a bias of 0.02 <span><math><mrow><msup><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>/</mo><msup><mrow><mi>m</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> on the target domain. Particularly, this is achieved using 55% less in situ data compared to the source domain. To ensure reliability and robustness, we conduct comprehensive analyses, including error histogram, residual, uncertainty, spatial distribution, ablation, statistical, and complex time complexity analyses. Throughout each evaluation, the proposed framework consistently exhibits a reliable and robust performance. The findings of this study hold promise in facilitating accurate surface soil moisture estimation, particularly in data-scarce regions.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"159 \",\"pages\":\"Article 111636\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197625016380\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625016380","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

训练深度学习(DL)模型需要大量的数据,特别是在土壤湿度预测中,需要大量的原位测量来防止过拟合。为了应对这一挑战,我们提出了一个定制的迁移学习框架,该框架使预训练的深度学习模型适应具有不同气候的新研究地点。具体来说,我们微调了一个完全连接的前馈神经网络,该网络最初是在来自湿润亚热带地区(源域)的大型数据集上训练的,使用来自半干旱地区(目标域)的有限数据。该框架利用线性数据融合技术从Sentinel-1/2和Shuttle Radar Topographic Mission (SRTM)图像中提取和生成的9个输入特征。我们针对十种基准算法系统地评估了所提出框架的性能。我们观察到,所提出的框架优于所有基准算法,相关系数(R)为0.81,均方根误差(RMSE)为0.05 m3/m3,目标域偏差为0.02 m3/m3。特别是,与源域相比,使用的原位数据减少了55%。为了确保可靠性和稳健性,我们进行了全面的分析,包括误差直方图、残差、不确定性、空间分布、消融、统计和复杂的时间复杂度分析。在每次评估中,所提出的框架始终表现出可靠和健壮的性能。本研究的发现有望促进准确的地表土壤水分估计,特别是在数据稀缺的地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Overcoming data scarcity: A transfer learning framework with fine-tuned neural networks and multi-sensor satellite image fusion for soil moisture estimation

Overcoming data scarcity: A transfer learning framework with fine-tuned neural networks and multi-sensor satellite image fusion for soil moisture estimation
Training deep learning (DL) models requires extensive data, particularly for soil moisture prediction, where large volumes of in situ measurements are needed to prevent overfitting. To address this challenge, we propose a customised transfer learning framework that adapts a pre-trained DL model to a new study site with a different climate. Specifically, we fine-tune a fully connected feed-forward neural network, originally trained on a large dataset from a humid subtropical region (source domain), using limited data from a semi-arid region (target domain). The proposed framework leverages nine input features extracted and generated from Sentinel-1/2 and Shuttle Radar Topographic Mission (SRTM) images through a linear data fusion technique. We systematically evaluate the performance of the proposed framework against ten benchmark algorithms. We observed that the proposed framework outperforms all benchmark algorithms, achieving a correlation coefficient (R) of 0.81, a root mean square error (RMSE) of 0.05 m3/m3, and a bias of 0.02 m3/m3 on the target domain. Particularly, this is achieved using 55% less in situ data compared to the source domain. To ensure reliability and robustness, we conduct comprehensive analyses, including error histogram, residual, uncertainty, spatial distribution, ablation, statistical, and complex time complexity analyses. Throughout each evaluation, the proposed framework consistently exhibits a reliable and robust performance. The findings of this study hold promise in facilitating accurate surface soil moisture estimation, particularly in data-scarce regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信