机械臂时变问题的两种新型抗谐波归零神经网络

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Bing Zhang , Xinglong Chen , Yuhua Zheng , Shuai Li , Duc Truong Pham , Yao Mao
{"title":"机械臂时变问题的两种新型抗谐波归零神经网络","authors":"Bing Zhang ,&nbsp;Xinglong Chen ,&nbsp;Yuhua Zheng ,&nbsp;Shuai Li ,&nbsp;Duc Truong Pham ,&nbsp;Yao Mao","doi":"10.1016/j.neucom.2025.130930","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents two novel harmonically disturbance-resistant zeroing neural network (ZNN) models: the known frequency harmonic-resistant ZNN (KFHRZNN) and the unknown frequency harmonic-resistant ZNN (UFHRZNN). These models are designed to tackle the pseudoinverse of time-varying matrices and inverse kinematics challenges in robotic manipulators. By precisely accounting for the derivatives of harmonic disturbances, they significantly mitigate these interferences, thereby improving the control efficacy of robots in high-speed, dynamic settings. The study elucidates the design rationale, convergence characteristics, and stability assessments for both KFHRZNN and UFHRZNN. Numerical simulations and physical experiments validate the effectiveness and advantages of these models in resolving time-varying issues within robotic manipulators, highlighting their precision and robustness against harmonic disturbances.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"651 ","pages":"Article 130930"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two novel harmonic-resistant zeroing neural networks for time-varying problems in robotic manipulators\",\"authors\":\"Bing Zhang ,&nbsp;Xinglong Chen ,&nbsp;Yuhua Zheng ,&nbsp;Shuai Li ,&nbsp;Duc Truong Pham ,&nbsp;Yao Mao\",\"doi\":\"10.1016/j.neucom.2025.130930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents two novel harmonically disturbance-resistant zeroing neural network (ZNN) models: the known frequency harmonic-resistant ZNN (KFHRZNN) and the unknown frequency harmonic-resistant ZNN (UFHRZNN). These models are designed to tackle the pseudoinverse of time-varying matrices and inverse kinematics challenges in robotic manipulators. By precisely accounting for the derivatives of harmonic disturbances, they significantly mitigate these interferences, thereby improving the control efficacy of robots in high-speed, dynamic settings. The study elucidates the design rationale, convergence characteristics, and stability assessments for both KFHRZNN and UFHRZNN. Numerical simulations and physical experiments validate the effectiveness and advantages of these models in resolving time-varying issues within robotic manipulators, highlighting their precision and robustness against harmonic disturbances.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"651 \",\"pages\":\"Article 130930\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225016029\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225016029","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了两种新的抗谐波干扰归零神经网络模型:已知频率抗谐波神经网络(KFHRZNN)和未知频率抗谐波神经网络(UFHRZNN)。这些模型旨在解决时变矩阵的伪逆问题和机器人机械臂的逆运动学问题。通过精确地计算谐波干扰的导数,他们显著地减轻了这些干扰,从而提高了机器人在高速、动态环境中的控制效率。研究阐明了KFHRZNN和UFHRZNN的设计原理、收敛特性和稳定性评估。数值模拟和物理实验验证了这些模型在解决机械臂时变问题方面的有效性和优势,突出了它们对谐波干扰的精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two novel harmonic-resistant zeroing neural networks for time-varying problems in robotic manipulators
This paper presents two novel harmonically disturbance-resistant zeroing neural network (ZNN) models: the known frequency harmonic-resistant ZNN (KFHRZNN) and the unknown frequency harmonic-resistant ZNN (UFHRZNN). These models are designed to tackle the pseudoinverse of time-varying matrices and inverse kinematics challenges in robotic manipulators. By precisely accounting for the derivatives of harmonic disturbances, they significantly mitigate these interferences, thereby improving the control efficacy of robots in high-speed, dynamic settings. The study elucidates the design rationale, convergence characteristics, and stability assessments for both KFHRZNN and UFHRZNN. Numerical simulations and physical experiments validate the effectiveness and advantages of these models in resolving time-varying issues within robotic manipulators, highlighting their precision and robustness against harmonic disturbances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信