城市自动驾驶中交互感知轨迹预测的深度学习技术综述

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Iago Pachêco Gomes, Denis Fernando Wolf
{"title":"城市自动驾驶中交互感知轨迹预测的深度学习技术综述","authors":"Iago Pachêco Gomes,&nbsp;Denis Fernando Wolf","doi":"10.1016/j.neucom.2025.131014","DOIUrl":null,"url":null,"abstract":"<div><div>Autonomous vehicles can improve urban transport by using multiple components that accurately represent their surroundings and improve decision-making processes. One essential component is trajectory prediction, which estimates the future states of traffic participants and anticipates hazardous scenarios. There are different approaches for trajectory prediction, in which Intention-aware and Interaction-aware approaches represent the state-of-the-art since they involve better representation of the surroundings. This paper reviews the literature on Interaction-Aware Trajectory Prediction for autonomous vehicles. It explores how incorporating maneuver intentions and interactions can improve prediction accuracy, and it examines the techniques and datasets employed in this field.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"651 ","pages":"Article 131014"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive review of deep learning techniques for interaction-aware trajectory prediction in urban autonomous driving\",\"authors\":\"Iago Pachêco Gomes,&nbsp;Denis Fernando Wolf\",\"doi\":\"10.1016/j.neucom.2025.131014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Autonomous vehicles can improve urban transport by using multiple components that accurately represent their surroundings and improve decision-making processes. One essential component is trajectory prediction, which estimates the future states of traffic participants and anticipates hazardous scenarios. There are different approaches for trajectory prediction, in which Intention-aware and Interaction-aware approaches represent the state-of-the-art since they involve better representation of the surroundings. This paper reviews the literature on Interaction-Aware Trajectory Prediction for autonomous vehicles. It explores how incorporating maneuver intentions and interactions can improve prediction accuracy, and it examines the techniques and datasets employed in this field.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"651 \",\"pages\":\"Article 131014\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225016868\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225016868","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

自动驾驶汽车可以通过使用精确代表周围环境的多个组件来改善城市交通,并改善决策过程。其中一个重要组成部分是轨迹预测,它可以估计交通参与者的未来状态,并预测危险情况。轨迹预测有不同的方法,其中意图感知和交互感知方法代表了最先进的技术,因为它们能更好地表征周围环境。本文综述了自动驾驶车辆交互感知轨迹预测的相关文献。它探讨了如何结合机动意图和相互作用可以提高预测精度,并检查了该领域使用的技术和数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comprehensive review of deep learning techniques for interaction-aware trajectory prediction in urban autonomous driving
Autonomous vehicles can improve urban transport by using multiple components that accurately represent their surroundings and improve decision-making processes. One essential component is trajectory prediction, which estimates the future states of traffic participants and anticipates hazardous scenarios. There are different approaches for trajectory prediction, in which Intention-aware and Interaction-aware approaches represent the state-of-the-art since they involve better representation of the surroundings. This paper reviews the literature on Interaction-Aware Trajectory Prediction for autonomous vehicles. It explores how incorporating maneuver intentions and interactions can improve prediction accuracy, and it examines the techniques and datasets employed in this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信