环量子引力中的旋转带电非奇异黑洞及其EHT的观测印记

IF 10.5 4区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Yassine Sekhmani , Heena Ali , Sushant G. Ghosh , Kuantay Boshkayev
{"title":"环量子引力中的旋转带电非奇异黑洞及其EHT的观测印记","authors":"Yassine Sekhmani ,&nbsp;Heena Ali ,&nbsp;Sushant G. Ghosh ,&nbsp;Kuantay Boshkayev","doi":"10.1016/j.jheap.2025.100425","DOIUrl":null,"url":null,"abstract":"<div><div>We study the observational signatures of charged non-singular black holes (BHs) in loop quantum gravity (LQG), focusing on their shadows and constraints from Event Horizon Telescope (EHT) data. We employ a modified Newman-Janis algorithm (MNJA) to obtain a rotating BH metric from a static LQG-corrected solution characterized by spin <em>a</em>, charge <em>Q</em>, and the LQG parameter <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. The EHT observed shadows of Sgr A* and M87*, with angular diameters <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mi>h</mi></mrow></msub><mo>=</mo><mn>48.7</mn><mo>±</mo><mn>7</mn><mspace></mspace><mi>μ</mi></math></span>as and <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><mn>42</mn><mo>±</mo><mn>3</mn><mspace></mspace><mi>μ</mi></math></span>as, and masses <span><math><mi>M</mi><mo>∼</mo><mn>4</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>6</mn></mrow></msup><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span> and <span><math><mn>6.5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>9</mn></mrow></msup><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, respectively. We analyze shadow observables—areal radius <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>, distortion <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>, and oblateness <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>—to constrain <span><math><mo>(</mo><mi>Q</mi><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>a</mi><mo>)</mo></math></span> using EHT data. For M87* (<span><math><mi>a</mi><mo>∼</mo><mn>0.9</mn><mi>M</mi></math></span>), it turns out that <span><math><mn>4.31</mn><mi>M</mi><mo>≤</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>≤</mo><mn>6.08</mn><mi>M</mi></math></span>, <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>≤</mo><mn>1.33</mn></math></span>; for Sgr A*, <span><math><mn>4.3</mn><mi>M</mi><mo>≤</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>≤</mo><mn>5.5</mn><mi>M</mi></math></span>. At <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>=</mo><msup><mrow><mn>50</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span>, Sgr A* yields <span><math><mn>1.021</mn><mo>≤</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≤</mo><mn>1.1</mn></math></span> and <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0.05003</mn><mi>M</mi><mo>,</mo><mn>0.7124</mn><mi>M</mi><mo>)</mo></math></span>; whereas for M87* at <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>=</mo><msup><mrow><mn>17</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span>, we find that <span><math><mn>0.9985</mn><mo>≤</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≤</mo><mn>1.1</mn></math></span> and <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0.04961</mn><mi>M</mi><mo>,</mo><mn>0.7464</mn><mi>M</mi><mo>)</mo></math></span>. The bounds on RQBH parameters obtained from the EHT results of SgrA * are more stringent than those obtained from the EHT image of M87*. We also compute the energy emission rate, revealing enhanced high-frequency emission from quantum effects. These results offer testable LQG signatures and connect quantum gravity with BH imaging, providing a framework for comparing polymerized BHs with observations. Thus, suggest that RQBHs are viable candidates for astrophysical black holes.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"49 ","pages":"Article 100425"},"PeriodicalIF":10.5000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rotating charged nonsingular black holes in loop quantum gravity and their observational imprints from EHT\",\"authors\":\"Yassine Sekhmani ,&nbsp;Heena Ali ,&nbsp;Sushant G. Ghosh ,&nbsp;Kuantay Boshkayev\",\"doi\":\"10.1016/j.jheap.2025.100425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the observational signatures of charged non-singular black holes (BHs) in loop quantum gravity (LQG), focusing on their shadows and constraints from Event Horizon Telescope (EHT) data. We employ a modified Newman-Janis algorithm (MNJA) to obtain a rotating BH metric from a static LQG-corrected solution characterized by spin <em>a</em>, charge <em>Q</em>, and the LQG parameter <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. The EHT observed shadows of Sgr A* and M87*, with angular diameters <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>s</mi><mi>h</mi></mrow></msub><mo>=</mo><mn>48.7</mn><mo>±</mo><mn>7</mn><mspace></mspace><mi>μ</mi></math></span>as and <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><mn>42</mn><mo>±</mo><mn>3</mn><mspace></mspace><mi>μ</mi></math></span>as, and masses <span><math><mi>M</mi><mo>∼</mo><mn>4</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>6</mn></mrow></msup><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span> and <span><math><mn>6.5</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>9</mn></mrow></msup><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, respectively. We analyze shadow observables—areal radius <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>, distortion <span><math><msub><mrow><mi>δ</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>, and oblateness <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>—to constrain <span><math><mo>(</mo><mi>Q</mi><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mi>a</mi><mo>)</mo></math></span> using EHT data. For M87* (<span><math><mi>a</mi><mo>∼</mo><mn>0.9</mn><mi>M</mi></math></span>), it turns out that <span><math><mn>4.31</mn><mi>M</mi><mo>≤</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>≤</mo><mn>6.08</mn><mi>M</mi></math></span>, <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>≤</mo><mn>1.33</mn></math></span>; for Sgr A*, <span><math><mn>4.3</mn><mi>M</mi><mo>≤</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>≤</mo><mn>5.5</mn><mi>M</mi></math></span>. At <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>=</mo><msup><mrow><mn>50</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span>, Sgr A* yields <span><math><mn>1.021</mn><mo>≤</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≤</mo><mn>1.1</mn></math></span> and <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0.05003</mn><mi>M</mi><mo>,</mo><mn>0.7124</mn><mi>M</mi><mo>)</mo></math></span>; whereas for M87* at <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>=</mo><msup><mrow><mn>17</mn></mrow><mrow><mo>∘</mo></mrow></msup></math></span>, we find that <span><math><mn>0.9985</mn><mo>≤</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≤</mo><mn>1.1</mn></math></span> and <span><math><mi>a</mi><mo>∈</mo><mo>(</mo><mn>0.04961</mn><mi>M</mi><mo>,</mo><mn>0.7464</mn><mi>M</mi><mo>)</mo></math></span>. The bounds on RQBH parameters obtained from the EHT results of SgrA * are more stringent than those obtained from the EHT image of M87*. We also compute the energy emission rate, revealing enhanced high-frequency emission from quantum effects. These results offer testable LQG signatures and connect quantum gravity with BH imaging, providing a framework for comparing polymerized BHs with observations. Thus, suggest that RQBHs are viable candidates for astrophysical black holes.</div></div>\",\"PeriodicalId\":54265,\"journal\":{\"name\":\"Journal of High Energy Astrophysics\",\"volume\":\"49 \",\"pages\":\"Article 100425\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214404825001065\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404825001065","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了环量子引力(LQG)中带电非奇异黑洞(BHs)的观测特征,重点研究了它们的阴影和来自事件视界望远镜(EHT)数据的约束。我们使用一种改进的Newman-Janis算法(MNJA)从一个由自旋a、电荷Q和LQG参数b0表征的静态LQG校正解中获得旋转BH度量。EHT观测到Sgr A*和M87*的阴影,角直径dsh=48.7±7μas, θd=42±3μas,质量M ~ 4×106M⊙和6.5×109M⊙。我们利用EHT数据分析阴影观测值-面半径Rs,畸变δs和扁率ds -以约束(Q,b0,a)。对于M87* (a ~ 0.9M),结果为4.31M≤Ra≤6.08M, 1≤Ds≤1.33;对于Sgr A*, 4.3M≤Ra≤5.5M。θo=50°时,Sgr A*产生1.021≤b0≤1.1,A∈(0.05003M,0.7124 4m);而对于M87* θo=17°,我们发现0.9985≤b0≤1.1,a∈(0.04961M,0.7464M)。从SgrA *的EHT结果得到的RQBH参数的边界比M87*的EHT图像得到的边界更严格。我们还计算了能量发射率,揭示了量子效应增强的高频发射。这些结果提供了可测试的LQG特征,并将量子引力与黑洞成像联系起来,为比较聚合黑洞与观测结果提供了一个框架。因此,我们认为RQBHs是天体物理学黑洞的可行候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rotating charged nonsingular black holes in loop quantum gravity and their observational imprints from EHT
We study the observational signatures of charged non-singular black holes (BHs) in loop quantum gravity (LQG), focusing on their shadows and constraints from Event Horizon Telescope (EHT) data. We employ a modified Newman-Janis algorithm (MNJA) to obtain a rotating BH metric from a static LQG-corrected solution characterized by spin a, charge Q, and the LQG parameter b0. The EHT observed shadows of Sgr A* and M87*, with angular diameters dsh=48.7±7μas and θd=42±3μas, and masses M4×106M and 6.5×109M, respectively. We analyze shadow observables—areal radius Rs, distortion δs, and oblateness Ds—to constrain (Q,b0,a) using EHT data. For M87* (a0.9M), it turns out that 4.31MRa6.08M, 1Ds1.33; for Sgr A*, 4.3MRa5.5M. At θo=50, Sgr A* yields 1.021b01.1 and a(0.05003M,0.7124M); whereas for M87* at θo=17, we find that 0.9985b01.1 and a(0.04961M,0.7464M). The bounds on RQBH parameters obtained from the EHT results of SgrA * are more stringent than those obtained from the EHT image of M87*. We also compute the energy emission rate, revealing enhanced high-frequency emission from quantum effects. These results offer testable LQG signatures and connect quantum gravity with BH imaging, providing a framework for comparing polymerized BHs with observations. Thus, suggest that RQBHs are viable candidates for astrophysical black holes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Astrophysics
Journal of High Energy Astrophysics Earth and Planetary Sciences-Space and Planetary Science
CiteScore
9.70
自引率
5.30%
发文量
38
审稿时长
65 days
期刊介绍: The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信