GeoBM:一个基于python的工具,用于全球文献计量数据的集成可视化

IF 1.9 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-07-11 DOI:10.1016/j.mex.2025.103497
Chun Chong Fu , Jorge Fleta-Asín , Fernando Muñoz , Carlos Sáenz-Royo , Loo Keat Wei
{"title":"GeoBM:一个基于python的工具,用于全球文献计量数据的集成可视化","authors":"Chun Chong Fu ,&nbsp;Jorge Fleta-Asín ,&nbsp;Fernando Muñoz ,&nbsp;Carlos Sáenz-Royo ,&nbsp;Loo Keat Wei","doi":"10.1016/j.mex.2025.103497","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid proliferation of scientometric and bibliometric analyses has emphasized the need for robust, scalable methods to visualize complex, large-scale research data. Conventional geospatial visualization techniques—most notably choropleth maps—often introduce significant distortions due to their inability to adequately account for spatial heterogeneity and overdispersion in bibliometric distributions. To address these methodological shortcomings, we propose GeoBM (Geographic Bibliometric Mapping), a computational framework that enables enhanced geovisualization of global scientific output and collaboration patterns. GeoBM integrates normalized country-level publication volumes with bilateral collaboration frequencies to produce high-resolution, interpretable geographic maps that reflect both research intensity and international connectivity. Implemented in Python, the framework leverages modular, algorithmically optimized routines for real-time data processing and visualization, incorporating statistical controls to mitigate overdispersion and enhance visual fidelity. The system supports extensive customization and is deployed via open-source platforms such as Google Colab and GitHub, facilitating broad accessibility and reproducibility. By providing a dual-focus representation of publication density and collaborative strength, GeoBM offers a powerful tool for the spatial analysis of global research networks, contributing to more nuanced evaluations in science policy, research management, and innovation studies.</div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"15 ","pages":"Article 103497"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GeoBM: A Python-based tool for integrated visualization of global bibliometric data\",\"authors\":\"Chun Chong Fu ,&nbsp;Jorge Fleta-Asín ,&nbsp;Fernando Muñoz ,&nbsp;Carlos Sáenz-Royo ,&nbsp;Loo Keat Wei\",\"doi\":\"10.1016/j.mex.2025.103497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid proliferation of scientometric and bibliometric analyses has emphasized the need for robust, scalable methods to visualize complex, large-scale research data. Conventional geospatial visualization techniques—most notably choropleth maps—often introduce significant distortions due to their inability to adequately account for spatial heterogeneity and overdispersion in bibliometric distributions. To address these methodological shortcomings, we propose GeoBM (Geographic Bibliometric Mapping), a computational framework that enables enhanced geovisualization of global scientific output and collaboration patterns. GeoBM integrates normalized country-level publication volumes with bilateral collaboration frequencies to produce high-resolution, interpretable geographic maps that reflect both research intensity and international connectivity. Implemented in Python, the framework leverages modular, algorithmically optimized routines for real-time data processing and visualization, incorporating statistical controls to mitigate overdispersion and enhance visual fidelity. The system supports extensive customization and is deployed via open-source platforms such as Google Colab and GitHub, facilitating broad accessibility and reproducibility. By providing a dual-focus representation of publication density and collaborative strength, GeoBM offers a powerful tool for the spatial analysis of global research networks, contributing to more nuanced evaluations in science policy, research management, and innovation studies.</div></div>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":\"15 \",\"pages\":\"Article 103497\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215016125003425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125003425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

科学计量学和文献计量学分析的快速发展强调了对强大的、可扩展的方法来可视化复杂的、大规模的研究数据的需求。传统的地理空间可视化技术——最著名的是地形图——由于无法充分解释文献计量分布中的空间异质性和过度分散,常常会引入显著的扭曲。为了解决这些方法上的缺陷,我们提出了地理文献计量制图(geoobm),这是一个计算框架,可以增强全球科学产出和合作模式的地理可视化。GeoBM将标准化的国家级出版物量与双边合作频率相结合,生成高分辨率、可解释的地理地图,反映了研究强度和国际连通性。该框架使用Python实现,利用模块化、算法优化的例程进行实时数据处理和可视化,并结合统计控制来缓解过度分散并增强视觉保真度。该系统支持广泛的定制,并通过谷歌Colab和GitHub等开源平台部署,促进了广泛的可访问性和可重复性。通过提供出版密度和合作强度的双重焦点表示,GeoBM为全球研究网络的空间分析提供了一个强大的工具,有助于在科学政策、研究管理和创新研究方面进行更细致的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

GeoBM: A Python-based tool for integrated visualization of global bibliometric data

GeoBM: A Python-based tool for integrated visualization of global bibliometric data
The rapid proliferation of scientometric and bibliometric analyses has emphasized the need for robust, scalable methods to visualize complex, large-scale research data. Conventional geospatial visualization techniques—most notably choropleth maps—often introduce significant distortions due to their inability to adequately account for spatial heterogeneity and overdispersion in bibliometric distributions. To address these methodological shortcomings, we propose GeoBM (Geographic Bibliometric Mapping), a computational framework that enables enhanced geovisualization of global scientific output and collaboration patterns. GeoBM integrates normalized country-level publication volumes with bilateral collaboration frequencies to produce high-resolution, interpretable geographic maps that reflect both research intensity and international connectivity. Implemented in Python, the framework leverages modular, algorithmically optimized routines for real-time data processing and visualization, incorporating statistical controls to mitigate overdispersion and enhance visual fidelity. The system supports extensive customization and is deployed via open-source platforms such as Google Colab and GitHub, facilitating broad accessibility and reproducibility. By providing a dual-focus representation of publication density and collaborative strength, GeoBM offers a powerful tool for the spatial analysis of global research networks, contributing to more nuanced evaluations in science policy, research management, and innovation studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信