Xiaokun Fan , Yali Chen , Min Liu , Yuchen Zhu , Zhongcheng Li
{"title":"空地协同推理框架中数据感知与计算的联合优化:一种多智能体混合动作DRL方法","authors":"Xiaokun Fan , Yali Chen , Min Liu , Yuchen Zhu , Zhongcheng Li","doi":"10.1016/j.comnet.2025.111540","DOIUrl":null,"url":null,"abstract":"<div><div>Unmanned aerial vehicles (UAVs) are increasingly used for surveillance applications to take videos for Points of Interests (PoIs). Then, the sampled video data is fed into deep neural networks (DNNs) for inference. Due to the high computational complexity of DNNs, directly running DNN inference tasks on resource-constrained UAVs is intractable. To alleviate this issue, edge computing provides a promising solution by offloading tasks to the ground edge servers (ESs). However, how to flexibly schedule and tradeoff various resources for high-accuracy and low-delay inference is a challenge, especially in the complex scenario where video data sensing and DNN task processing are tightly coupled. Thus, this paper studies joint optimization for data sensing and computing in the air–ground collaborative inference framework. Specifically, the models for multi-UAV collaborative data sensing and collaborative inference between multiple UAVs and multiple ESs are designed. Then, we formulate an inference delay minimization problem by jointly optimizing UAVs’ 3D trajectories, number of sampled video frames and computation offloading, while satisfying accuracy, UAV energy budget and sensing mission requirements. Considering mixed continuous–discrete optimization variables, we propose a multi-agent proximal policy optimization (MAPPO) algorithm with a hybrid action space, called “MAPPO-HA”, to learn the optimal policies. Finally, simulation results demonstrate that our algorithm can achieve better performance compared with other optimization approaches.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"270 ","pages":"Article 111540"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint optimization of data sensing and computing in the air–ground collaborative inference framework: A multi-agent hybrid-action DRL approach\",\"authors\":\"Xiaokun Fan , Yali Chen , Min Liu , Yuchen Zhu , Zhongcheng Li\",\"doi\":\"10.1016/j.comnet.2025.111540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Unmanned aerial vehicles (UAVs) are increasingly used for surveillance applications to take videos for Points of Interests (PoIs). Then, the sampled video data is fed into deep neural networks (DNNs) for inference. Due to the high computational complexity of DNNs, directly running DNN inference tasks on resource-constrained UAVs is intractable. To alleviate this issue, edge computing provides a promising solution by offloading tasks to the ground edge servers (ESs). However, how to flexibly schedule and tradeoff various resources for high-accuracy and low-delay inference is a challenge, especially in the complex scenario where video data sensing and DNN task processing are tightly coupled. Thus, this paper studies joint optimization for data sensing and computing in the air–ground collaborative inference framework. Specifically, the models for multi-UAV collaborative data sensing and collaborative inference between multiple UAVs and multiple ESs are designed. Then, we formulate an inference delay minimization problem by jointly optimizing UAVs’ 3D trajectories, number of sampled video frames and computation offloading, while satisfying accuracy, UAV energy budget and sensing mission requirements. Considering mixed continuous–discrete optimization variables, we propose a multi-agent proximal policy optimization (MAPPO) algorithm with a hybrid action space, called “MAPPO-HA”, to learn the optimal policies. Finally, simulation results demonstrate that our algorithm can achieve better performance compared with other optimization approaches.</div></div>\",\"PeriodicalId\":50637,\"journal\":{\"name\":\"Computer Networks\",\"volume\":\"270 \",\"pages\":\"Article 111540\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389128625005079\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625005079","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Joint optimization of data sensing and computing in the air–ground collaborative inference framework: A multi-agent hybrid-action DRL approach
Unmanned aerial vehicles (UAVs) are increasingly used for surveillance applications to take videos for Points of Interests (PoIs). Then, the sampled video data is fed into deep neural networks (DNNs) for inference. Due to the high computational complexity of DNNs, directly running DNN inference tasks on resource-constrained UAVs is intractable. To alleviate this issue, edge computing provides a promising solution by offloading tasks to the ground edge servers (ESs). However, how to flexibly schedule and tradeoff various resources for high-accuracy and low-delay inference is a challenge, especially in the complex scenario where video data sensing and DNN task processing are tightly coupled. Thus, this paper studies joint optimization for data sensing and computing in the air–ground collaborative inference framework. Specifically, the models for multi-UAV collaborative data sensing and collaborative inference between multiple UAVs and multiple ESs are designed. Then, we formulate an inference delay minimization problem by jointly optimizing UAVs’ 3D trajectories, number of sampled video frames and computation offloading, while satisfying accuracy, UAV energy budget and sensing mission requirements. Considering mixed continuous–discrete optimization variables, we propose a multi-agent proximal policy optimization (MAPPO) algorithm with a hybrid action space, called “MAPPO-HA”, to learn the optimal policies. Finally, simulation results demonstrate that our algorithm can achieve better performance compared with other optimization approaches.
期刊介绍:
Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.