DCrownFormer[公式略]:基于预备牙和拮抗牙三维扫描数据的牙冠修复体形态感知网格生成和细化转换器

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Su Yang, Ji Yong Han, Sang-Heon Lim, Sujeong Kim, Jungro Lee, Keun-Suh Kim, Jun-Min Kim, Won-Jin Yi
{"title":"DCrownFormer[公式略]:基于预备牙和拮抗牙三维扫描数据的牙冠修复体形态感知网格生成和细化转换器","authors":"Su Yang, Ji Yong Han, Sang-Heon Lim, Sujeong Kim, Jungro Lee, Keun-Suh Kim, Jun-Min Kim, Won-Jin Yi","doi":"10.1016/j.media.2025.103717","DOIUrl":null,"url":null,"abstract":"Dental prostheses are important in designing artificial replacements to restore the function and appearance of teeth. However, designing a patient-specific dental prosthesis is still labor-intensive and depends on dental professionals with knowledge of oral anatomy and their experience. Also, this procedure is time-consuming because the initial tooth template for designing dental crowns is not personalized. In this paper, we propose a novel end-to-end morphology-aware mesh generation and refinement transformer called DCrownFormer<mml:math altimg=\"si12.svg\" display=\"inline\"><mml:msup><mml:mrow></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:math> to directly and efficiently generate high-fidelity and realistic meshes for dental crowns from the mesh inputs of 3D scans of preparation and antagonist teeth. DCrownFormer<mml:math altimg=\"si12.svg\" display=\"inline\"><mml:msup><mml:mrow></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:math> captures local and global geometric features from mesh inputs using a geometric feature attention descriptor and the transformer encoder. We leverage a morphology-aware cross-attention module with curvature-penalty Chamfer distance loss (<mml:math altimg=\"si406.svg\" display=\"inline\"><mml:mrow><mml:mi>C</mml:mi><mml:mi>P</mml:mi><mml:mi>L</mml:mi></mml:mrow></mml:math>) to generate the points and normals of a dental crown from geometric features at the transformer decoder. Then, a coarse indicator grid is directly estimated from the generated points and normals of the dental crown using differentiable Poisson surface reconstruction. To further improve the fine details of the occlusal surfaces, we propose a learning-based refinement method called implicit grid refinement network with a gradient-penalty mesh reconstruction loss (<mml:math altimg=\"si133.svg\" display=\"inline\"><mml:mrow><mml:mi>G</mml:mi><mml:mi>P</mml:mi><mml:mi>L</mml:mi></mml:mrow></mml:math>) to generate high-fidelity and realistic dental crown meshes by refining the details of the coarse indicator grid. Our experimental results demonstrate that DCrownFormer<mml:math altimg=\"si12.svg\" display=\"inline\"><mml:msup><mml:mrow></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:math> is superior to other methods in improving the shape completeness, surface smoothness, and morphological details of occlusal surfaces, such as dental grooves and cusps. We further validate the effectiveness of key components and the significant benefits of <mml:math altimg=\"si406.svg\" display=\"inline\"><mml:mrow><mml:mi>C</mml:mi><mml:mi>P</mml:mi><mml:mi>L</mml:mi></mml:mrow></mml:math> and <mml:math altimg=\"si133.svg\" display=\"inline\"><mml:mrow><mml:mi>G</mml:mi><mml:mi>P</mml:mi><mml:mi>L</mml:mi></mml:mrow></mml:math> through ablation studies.","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"53 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DCrownFormer[formula omitted]: Morphology-aware mesh generation and refinement transformer for dental crown prosthesis from 3D scan data of preparation and antagonist teeth\",\"authors\":\"Su Yang, Ji Yong Han, Sang-Heon Lim, Sujeong Kim, Jungro Lee, Keun-Suh Kim, Jun-Min Kim, Won-Jin Yi\",\"doi\":\"10.1016/j.media.2025.103717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dental prostheses are important in designing artificial replacements to restore the function and appearance of teeth. However, designing a patient-specific dental prosthesis is still labor-intensive and depends on dental professionals with knowledge of oral anatomy and their experience. Also, this procedure is time-consuming because the initial tooth template for designing dental crowns is not personalized. In this paper, we propose a novel end-to-end morphology-aware mesh generation and refinement transformer called DCrownFormer<mml:math altimg=\\\"si12.svg\\\" display=\\\"inline\\\"><mml:msup><mml:mrow></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:math> to directly and efficiently generate high-fidelity and realistic meshes for dental crowns from the mesh inputs of 3D scans of preparation and antagonist teeth. DCrownFormer<mml:math altimg=\\\"si12.svg\\\" display=\\\"inline\\\"><mml:msup><mml:mrow></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:math> captures local and global geometric features from mesh inputs using a geometric feature attention descriptor and the transformer encoder. We leverage a morphology-aware cross-attention module with curvature-penalty Chamfer distance loss (<mml:math altimg=\\\"si406.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>C</mml:mi><mml:mi>P</mml:mi><mml:mi>L</mml:mi></mml:mrow></mml:math>) to generate the points and normals of a dental crown from geometric features at the transformer decoder. Then, a coarse indicator grid is directly estimated from the generated points and normals of the dental crown using differentiable Poisson surface reconstruction. To further improve the fine details of the occlusal surfaces, we propose a learning-based refinement method called implicit grid refinement network with a gradient-penalty mesh reconstruction loss (<mml:math altimg=\\\"si133.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>G</mml:mi><mml:mi>P</mml:mi><mml:mi>L</mml:mi></mml:mrow></mml:math>) to generate high-fidelity and realistic dental crown meshes by refining the details of the coarse indicator grid. Our experimental results demonstrate that DCrownFormer<mml:math altimg=\\\"si12.svg\\\" display=\\\"inline\\\"><mml:msup><mml:mrow></mml:mrow><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:math> is superior to other methods in improving the shape completeness, surface smoothness, and morphological details of occlusal surfaces, such as dental grooves and cusps. We further validate the effectiveness of key components and the significant benefits of <mml:math altimg=\\\"si406.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>C</mml:mi><mml:mi>P</mml:mi><mml:mi>L</mml:mi></mml:mrow></mml:math> and <mml:math altimg=\\\"si133.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>G</mml:mi><mml:mi>P</mml:mi><mml:mi>L</mml:mi></mml:mrow></mml:math> through ablation studies.\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.media.2025.103717\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.media.2025.103717","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

修复体是修复牙齿功能和外观的重要人工替代物。然而,设计一个病人特定的牙科假体仍然是劳动密集型的,并且依赖于具有口腔解剖学知识和经验的牙科专业人员。此外,由于设计牙冠的初始牙齿模板不是个性化的,因此该过程非常耗时。在本文中,我们提出了一种新型的端到端形态感知网格生成和细化转换器,称为DCrownFormer+,可以直接有效地从预备牙和拮抗剂牙的3D扫描网格输入中生成高保真度和逼真的牙冠网格。DCrownFormer+使用几何特征注意描述符和变压器编码器从网格输入捕获局部和全局几何特征。我们利用具有曲率惩罚倒角距离损失(CPL)的形态学感知交叉注意模块,从变压器解码器的几何特征中生成牙冠的点和法线。然后,利用可微泊松曲面重构,从生成的牙冠点和法线直接估计粗指标网格;为了进一步改善咬合表面的精细细节,我们提出了一种基于学习的细化方法,即梯度惩罚网格重建损失(GPL)隐式网格细化网络,通过对粗指标网格的细节进行细化,生成高保真逼真的牙冠网格。实验结果表明,DCrownFormer+在提高牙槽和牙尖等咬合表面的形状完整性、表面光滑度和形态学细节方面优于其他方法。我们通过消融研究进一步验证了关键成分的有效性以及CPL和GPL的显著益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DCrownFormer[formula omitted]: Morphology-aware mesh generation and refinement transformer for dental crown prosthesis from 3D scan data of preparation and antagonist teeth
Dental prostheses are important in designing artificial replacements to restore the function and appearance of teeth. However, designing a patient-specific dental prosthesis is still labor-intensive and depends on dental professionals with knowledge of oral anatomy and their experience. Also, this procedure is time-consuming because the initial tooth template for designing dental crowns is not personalized. In this paper, we propose a novel end-to-end morphology-aware mesh generation and refinement transformer called DCrownFormer+ to directly and efficiently generate high-fidelity and realistic meshes for dental crowns from the mesh inputs of 3D scans of preparation and antagonist teeth. DCrownFormer+ captures local and global geometric features from mesh inputs using a geometric feature attention descriptor and the transformer encoder. We leverage a morphology-aware cross-attention module with curvature-penalty Chamfer distance loss (CPL) to generate the points and normals of a dental crown from geometric features at the transformer decoder. Then, a coarse indicator grid is directly estimated from the generated points and normals of the dental crown using differentiable Poisson surface reconstruction. To further improve the fine details of the occlusal surfaces, we propose a learning-based refinement method called implicit grid refinement network with a gradient-penalty mesh reconstruction loss (GPL) to generate high-fidelity and realistic dental crown meshes by refining the details of the coarse indicator grid. Our experimental results demonstrate that DCrownFormer+ is superior to other methods in improving the shape completeness, surface smoothness, and morphological details of occlusal surfaces, such as dental grooves and cusps. We further validate the effectiveness of key components and the significant benefits of CPL and GPL through ablation studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信