Wenle Ye, Yanchun Zhao, Yutong Zhou, Jiansong Huang, Xiao He, Zhixin Ma, Xin Huang, Chao Hu, Fenglin Li, Qing Ling, Huafeng Wang, Hongyan Tong, Jie Sun, Jie Jin
{"title":"nsun2介导的FSP1胞嘧啶-5甲基化保护急性髓系白血病细胞免于铁凋亡","authors":"Wenle Ye, Yanchun Zhao, Yutong Zhou, Jiansong Huang, Xiao He, Zhixin Ma, Xin Huang, Chao Hu, Fenglin Li, Qing Ling, Huafeng Wang, Hongyan Tong, Jie Sun, Jie Jin","doi":"10.1186/s12943-025-02394-8","DOIUrl":null,"url":null,"abstract":"RNA 5-methylcytosine (m5C), a prevalent epitranscriptomic modification that critically regulates gene expression and cellular homeostasis. While its roles in solid tumors have been increasingly recognized, the functional landscape of m5C in acute myeloid leukemia (AML) remains unexplored. Here, we identified NSUN2, the principal RNA m5C methyltransferase, as a key regulator of AML progression. NSUN2 was aberrantly upregulated in AML patient samples and correlated with poor prognosis. Functional studies demonstrated that NSUN2 promoted leukemic cell proliferation, enhanced tumor growth in xenograft models, and conferred resistance to ferroptosis—a regulated cell death process driven by lipid peroxidation. Mechanistically, NSUN2 catalyzed m⁵C deposition on the 3’UTR of FSP1 (ferroptosis suppressor protein 1) mRNA, facilitating its recognition and stabilization by the m5C reader protein YBX1. This NSUN2-YBX1-FSP1 axis protected AML cells from ferroptotic stress by suppressing lipid peroxidation and oxidative damage. Depletion of NSUN2 or FSP1 induced mitochondrial remodeling, which primed cells for ferroptosis. Reconstitution of wild-type NSUN2 or FSP1 rescued ferroptosis resistance, whereas catalytically inactive NSUN2 (C271A/C321A) or non-functional FSP1 mutants (G2A/E156A) failed to reverse this phenotype. Pharmacological inhibition of NSUN2 with MY-1B or targeting FSP1 with iFSP1 exhibited potent anti-leukemic effects, synergizing robustly with ferroptosis inducers, standard chemotherapy, and the BCL-2 inhibitor venetoclax. Our study unveils NSUN2 and FSP1 as prognostic biomarkers and therapeutic targets in AML. We highlight a novel epitranscriptomic mechanism linking RNA methylation to ferroptosis evasion, providing a dual-strategy approach to overcome AML treatment resistance.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"96 1","pages":""},"PeriodicalIF":33.9000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NSUN2-mediated cytosine-5 methylation of FSP1 protects acute myeloid leukemia cells from ferroptosis\",\"authors\":\"Wenle Ye, Yanchun Zhao, Yutong Zhou, Jiansong Huang, Xiao He, Zhixin Ma, Xin Huang, Chao Hu, Fenglin Li, Qing Ling, Huafeng Wang, Hongyan Tong, Jie Sun, Jie Jin\",\"doi\":\"10.1186/s12943-025-02394-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RNA 5-methylcytosine (m5C), a prevalent epitranscriptomic modification that critically regulates gene expression and cellular homeostasis. While its roles in solid tumors have been increasingly recognized, the functional landscape of m5C in acute myeloid leukemia (AML) remains unexplored. Here, we identified NSUN2, the principal RNA m5C methyltransferase, as a key regulator of AML progression. NSUN2 was aberrantly upregulated in AML patient samples and correlated with poor prognosis. Functional studies demonstrated that NSUN2 promoted leukemic cell proliferation, enhanced tumor growth in xenograft models, and conferred resistance to ferroptosis—a regulated cell death process driven by lipid peroxidation. Mechanistically, NSUN2 catalyzed m⁵C deposition on the 3’UTR of FSP1 (ferroptosis suppressor protein 1) mRNA, facilitating its recognition and stabilization by the m5C reader protein YBX1. This NSUN2-YBX1-FSP1 axis protected AML cells from ferroptotic stress by suppressing lipid peroxidation and oxidative damage. Depletion of NSUN2 or FSP1 induced mitochondrial remodeling, which primed cells for ferroptosis. Reconstitution of wild-type NSUN2 or FSP1 rescued ferroptosis resistance, whereas catalytically inactive NSUN2 (C271A/C321A) or non-functional FSP1 mutants (G2A/E156A) failed to reverse this phenotype. Pharmacological inhibition of NSUN2 with MY-1B or targeting FSP1 with iFSP1 exhibited potent anti-leukemic effects, synergizing robustly with ferroptosis inducers, standard chemotherapy, and the BCL-2 inhibitor venetoclax. Our study unveils NSUN2 and FSP1 as prognostic biomarkers and therapeutic targets in AML. We highlight a novel epitranscriptomic mechanism linking RNA methylation to ferroptosis evasion, providing a dual-strategy approach to overcome AML treatment resistance.\",\"PeriodicalId\":19000,\"journal\":{\"name\":\"Molecular Cancer\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":33.9000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12943-025-02394-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02394-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
NSUN2-mediated cytosine-5 methylation of FSP1 protects acute myeloid leukemia cells from ferroptosis
RNA 5-methylcytosine (m5C), a prevalent epitranscriptomic modification that critically regulates gene expression and cellular homeostasis. While its roles in solid tumors have been increasingly recognized, the functional landscape of m5C in acute myeloid leukemia (AML) remains unexplored. Here, we identified NSUN2, the principal RNA m5C methyltransferase, as a key regulator of AML progression. NSUN2 was aberrantly upregulated in AML patient samples and correlated with poor prognosis. Functional studies demonstrated that NSUN2 promoted leukemic cell proliferation, enhanced tumor growth in xenograft models, and conferred resistance to ferroptosis—a regulated cell death process driven by lipid peroxidation. Mechanistically, NSUN2 catalyzed m⁵C deposition on the 3’UTR of FSP1 (ferroptosis suppressor protein 1) mRNA, facilitating its recognition and stabilization by the m5C reader protein YBX1. This NSUN2-YBX1-FSP1 axis protected AML cells from ferroptotic stress by suppressing lipid peroxidation and oxidative damage. Depletion of NSUN2 or FSP1 induced mitochondrial remodeling, which primed cells for ferroptosis. Reconstitution of wild-type NSUN2 or FSP1 rescued ferroptosis resistance, whereas catalytically inactive NSUN2 (C271A/C321A) or non-functional FSP1 mutants (G2A/E156A) failed to reverse this phenotype. Pharmacological inhibition of NSUN2 with MY-1B or targeting FSP1 with iFSP1 exhibited potent anti-leukemic effects, synergizing robustly with ferroptosis inducers, standard chemotherapy, and the BCL-2 inhibitor venetoclax. Our study unveils NSUN2 and FSP1 as prognostic biomarkers and therapeutic targets in AML. We highlight a novel epitranscriptomic mechanism linking RNA methylation to ferroptosis evasion, providing a dual-strategy approach to overcome AML treatment resistance.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.