变分量子算法中基于Stein恒等式的量子Fisher信息估计

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-07-21 DOI:10.22331/q-2025-07-21-1798
Mourad Halla
{"title":"变分量子算法中基于Stein恒等式的量子Fisher信息估计","authors":"Mourad Halla","doi":"10.22331/q-2025-07-21-1798","DOIUrl":null,"url":null,"abstract":"The Quantum Fisher Information Matrix (QFIM) plays a crucial role in quantum optimization algorithms such as Variational Quantum Imaginary Time Evolution and Quantum Natural Gradient Descent. However, computing the full QFIM incurs a quadratic computational cost of $O(d^2)$ with respect to the number of parameters $d$, limiting its scalability for high-dimensional quantum systems. To address this limitation, stochastic methods such as the Simultaneous Perturbation Stochastic Approximation (SPSA) have been employed to reduce computational complexity to a constant (Quantum 5, 567 (2021)). In this work, we propose an alternative estimation framework based on Stein's identity that also achieves constant computational complexity. Furthermore, our method reduces the quantum resources required for QFIM estimation compared to the SPSA approach. We provide numerical examples using the transverse-field Ising model and the lattice Schwinger model to demonstrate the feasibility of applying our method to realistic quantum systems.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"12 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Quantum Fisher Information via Stein’s Identity in Variational Quantum Algorithms\",\"authors\":\"Mourad Halla\",\"doi\":\"10.22331/q-2025-07-21-1798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Quantum Fisher Information Matrix (QFIM) plays a crucial role in quantum optimization algorithms such as Variational Quantum Imaginary Time Evolution and Quantum Natural Gradient Descent. However, computing the full QFIM incurs a quadratic computational cost of $O(d^2)$ with respect to the number of parameters $d$, limiting its scalability for high-dimensional quantum systems. To address this limitation, stochastic methods such as the Simultaneous Perturbation Stochastic Approximation (SPSA) have been employed to reduce computational complexity to a constant (Quantum 5, 567 (2021)). In this work, we propose an alternative estimation framework based on Stein's identity that also achieves constant computational complexity. Furthermore, our method reduces the quantum resources required for QFIM estimation compared to the SPSA approach. We provide numerical examples using the transverse-field Ising model and the lattice Schwinger model to demonstrate the feasibility of applying our method to realistic quantum systems.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-07-21-1798\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-07-21-1798","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子Fisher信息矩阵(QFIM)在变分量子虚时间演化和量子自然梯度下降等量子优化算法中起着至关重要的作用。然而,计算完整的QFIM会产生关于参数数量的二次计算成本$O(d^2)$,限制了其在高维量子系统中的可扩展性。为了解决这一限制,随机方法,如同步摄动随机逼近(SPSA)已被用于降低计算复杂性到一个常数(量子5,567(2021))。在这项工作中,我们提出了一个基于Stein恒等式的替代估计框架,该框架也实现了恒定的计算复杂度。此外,与SPSA方法相比,我们的方法减少了QFIM估计所需的量子资源。我们提供了使用横场Ising模型和晶格Schwinger模型的数值例子来证明将我们的方法应用于实际量子系统的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Quantum Fisher Information via Stein’s Identity in Variational Quantum Algorithms
The Quantum Fisher Information Matrix (QFIM) plays a crucial role in quantum optimization algorithms such as Variational Quantum Imaginary Time Evolution and Quantum Natural Gradient Descent. However, computing the full QFIM incurs a quadratic computational cost of $O(d^2)$ with respect to the number of parameters $d$, limiting its scalability for high-dimensional quantum systems. To address this limitation, stochastic methods such as the Simultaneous Perturbation Stochastic Approximation (SPSA) have been employed to reduce computational complexity to a constant (Quantum 5, 567 (2021)). In this work, we propose an alternative estimation framework based on Stein's identity that also achieves constant computational complexity. Furthermore, our method reduces the quantum resources required for QFIM estimation compared to the SPSA approach. We provide numerical examples using the transverse-field Ising model and the lattice Schwinger model to demonstrate the feasibility of applying our method to realistic quantum systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信