Mohammad R Salmanpour, Amin Mousavi, Yixi Xu, William B Weeks, Ilker Hacihaliloglu
{"title":"高性能图像到图像转换网络对临床视觉评估和预后预测的影响:利用超声到MRI翻译前列腺癌。","authors":"Mohammad R Salmanpour, Amin Mousavi, Yixi Xu, William B Weeks, Ilker Hacihaliloglu","doi":"10.1007/s11548-025-03481-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Image-to-image (I2I) translation networks have emerged as promising tools for generating synthetic medical images; however, their clinical reliability and ability to preserve diagnostically relevant features remain underexplored. This study evaluates the performance of state-of-the-art 2D/3D I2I networks for converting ultrasound (US) images to synthetic MRI in prostate cancer (PCa) imaging. The novelty lies in combining radiomics, expert clinical evaluation, and classification performance to comprehensively benchmark these models for potential integration into real-world diagnostic workflows.</p><p><strong>Methods: </strong>A dataset of 794 PCa patients was analyzed using ten leading I2I networks to synthesize MRI from US input. Radiomics feature (RF) analysis was performed using Spearman correlation to assess whether high-performing networks (SSIM > 0.85) preserved quantitative imaging biomarkers. A qualitative evaluation by seven experienced physicians assessed the anatomical realism, presence of artifacts, and diagnostic interpretability of synthetic images. Additionally, classification tasks using synthetic images were conducted using two machine learning and one deep learning model to assess the practical diagnostic benefit.</p><p><strong>Results: </strong>Among all networks, 2D-Pix2Pix achieved the highest SSIM (0.855 ± 0.032). RF analysis showed that 76 out of 186 features were preserved post-translation, while the remainder were degraded or lost. Qualitative feedback revealed consistent issues with low-level feature preservation and artifact generation, particularly in lesion-rich regions. These evaluations were conducted to assess whether synthetic MRI retained clinically relevant patterns, supported expert interpretation, and improved diagnostic accuracy. Importantly, classification performance using synthetic MRI significantly exceeded that of US-based input, achieving average accuracy and AUC of ~ 0.93 ± 0.05.</p><p><strong>Conclusion: </strong>Although 2D-Pix2Pix showed the best overall performance in similarity and partial RF preservation, improvements are still required in lesion-level fidelity and artifact suppression. The combination of radiomics, qualitative, and classification analyses offered a holistic view of the current strengths and limitations of I2I models, supporting their potential in clinical applications pending further refinement and validation.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of high-performance image-to-image translation networks on clinical visual assessment and outcome prediction: utilizing ultrasound to MRI translation in prostate cancer.\",\"authors\":\"Mohammad R Salmanpour, Amin Mousavi, Yixi Xu, William B Weeks, Ilker Hacihaliloglu\",\"doi\":\"10.1007/s11548-025-03481-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Image-to-image (I2I) translation networks have emerged as promising tools for generating synthetic medical images; however, their clinical reliability and ability to preserve diagnostically relevant features remain underexplored. This study evaluates the performance of state-of-the-art 2D/3D I2I networks for converting ultrasound (US) images to synthetic MRI in prostate cancer (PCa) imaging. The novelty lies in combining radiomics, expert clinical evaluation, and classification performance to comprehensively benchmark these models for potential integration into real-world diagnostic workflows.</p><p><strong>Methods: </strong>A dataset of 794 PCa patients was analyzed using ten leading I2I networks to synthesize MRI from US input. Radiomics feature (RF) analysis was performed using Spearman correlation to assess whether high-performing networks (SSIM > 0.85) preserved quantitative imaging biomarkers. A qualitative evaluation by seven experienced physicians assessed the anatomical realism, presence of artifacts, and diagnostic interpretability of synthetic images. Additionally, classification tasks using synthetic images were conducted using two machine learning and one deep learning model to assess the practical diagnostic benefit.</p><p><strong>Results: </strong>Among all networks, 2D-Pix2Pix achieved the highest SSIM (0.855 ± 0.032). RF analysis showed that 76 out of 186 features were preserved post-translation, while the remainder were degraded or lost. Qualitative feedback revealed consistent issues with low-level feature preservation and artifact generation, particularly in lesion-rich regions. These evaluations were conducted to assess whether synthetic MRI retained clinically relevant patterns, supported expert interpretation, and improved diagnostic accuracy. Importantly, classification performance using synthetic MRI significantly exceeded that of US-based input, achieving average accuracy and AUC of ~ 0.93 ± 0.05.</p><p><strong>Conclusion: </strong>Although 2D-Pix2Pix showed the best overall performance in similarity and partial RF preservation, improvements are still required in lesion-level fidelity and artifact suppression. The combination of radiomics, qualitative, and classification analyses offered a holistic view of the current strengths and limitations of I2I models, supporting their potential in clinical applications pending further refinement and validation.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-025-03481-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03481-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Influence of high-performance image-to-image translation networks on clinical visual assessment and outcome prediction: utilizing ultrasound to MRI translation in prostate cancer.
Purpose: Image-to-image (I2I) translation networks have emerged as promising tools for generating synthetic medical images; however, their clinical reliability and ability to preserve diagnostically relevant features remain underexplored. This study evaluates the performance of state-of-the-art 2D/3D I2I networks for converting ultrasound (US) images to synthetic MRI in prostate cancer (PCa) imaging. The novelty lies in combining radiomics, expert clinical evaluation, and classification performance to comprehensively benchmark these models for potential integration into real-world diagnostic workflows.
Methods: A dataset of 794 PCa patients was analyzed using ten leading I2I networks to synthesize MRI from US input. Radiomics feature (RF) analysis was performed using Spearman correlation to assess whether high-performing networks (SSIM > 0.85) preserved quantitative imaging biomarkers. A qualitative evaluation by seven experienced physicians assessed the anatomical realism, presence of artifacts, and diagnostic interpretability of synthetic images. Additionally, classification tasks using synthetic images were conducted using two machine learning and one deep learning model to assess the practical diagnostic benefit.
Results: Among all networks, 2D-Pix2Pix achieved the highest SSIM (0.855 ± 0.032). RF analysis showed that 76 out of 186 features were preserved post-translation, while the remainder were degraded or lost. Qualitative feedback revealed consistent issues with low-level feature preservation and artifact generation, particularly in lesion-rich regions. These evaluations were conducted to assess whether synthetic MRI retained clinically relevant patterns, supported expert interpretation, and improved diagnostic accuracy. Importantly, classification performance using synthetic MRI significantly exceeded that of US-based input, achieving average accuracy and AUC of ~ 0.93 ± 0.05.
Conclusion: Although 2D-Pix2Pix showed the best overall performance in similarity and partial RF preservation, improvements are still required in lesion-level fidelity and artifact suppression. The combination of radiomics, qualitative, and classification analyses offered a holistic view of the current strengths and limitations of I2I models, supporting their potential in clinical applications pending further refinement and validation.
期刊介绍:
The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.