ISENet:一种深度学习模型,用于检测长期心电监测中缺血性ST段变化。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Chun-Cheng Lin, Cheng-Yu Yeh, Jian-Hong Lin
{"title":"ISENet:一种深度学习模型,用于检测长期心电监测中缺血性ST段变化。","authors":"Chun-Cheng Lin, Cheng-Yu Yeh, Jian-Hong Lin","doi":"10.1007/s11517-025-03416-9","DOIUrl":null,"url":null,"abstract":"<p><p>Long-term ECG monitoring is crucial for detecting asymptomatic or intermittent myocardial ischemia, as it mitigates irreversible cardiac damage and prevents disease progression. Myocardial ischemia appears on ECG as transient ST-segment level and morphology alterations, known as ischemic ST change events (ISE). However, automatically identifying ISE based on ECG signals is challenging, as its recognition is highly susceptible to interference from non-ischemic ST change events, including heart rate-related ST change events (HRE), axis shift events (ASE), and conduction change events (CCE). To address this challenge, this study proposes ISENet, a lightweight deep learning-based neural network for ISE detection. The model was trained and evaluated using ECG signals and annotations from the PhysioNet long-term ST database, with tenfold cross-validation to ensure robustness and generalizability. Experimental results show that ISENet achieves an average ISE detection accuracy of 83.5%, surpassing benchmark models like VGG19 and ResNet50 while significantly reducing model complexity. This study is the first to apply a deep learning-based neural network for ISE detection using ECG signals from the long-term ST database. Compared to previous feature-engineering and feature-learning approaches, ISENet addresses key limitations in experimental design and methodology, representing a significant advancement in automated myocardial ischemia detection.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ISENet: a deep learning model for detecting ischemic ST changes in long-term ECG monitoring.\",\"authors\":\"Chun-Cheng Lin, Cheng-Yu Yeh, Jian-Hong Lin\",\"doi\":\"10.1007/s11517-025-03416-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Long-term ECG monitoring is crucial for detecting asymptomatic or intermittent myocardial ischemia, as it mitigates irreversible cardiac damage and prevents disease progression. Myocardial ischemia appears on ECG as transient ST-segment level and morphology alterations, known as ischemic ST change events (ISE). However, automatically identifying ISE based on ECG signals is challenging, as its recognition is highly susceptible to interference from non-ischemic ST change events, including heart rate-related ST change events (HRE), axis shift events (ASE), and conduction change events (CCE). To address this challenge, this study proposes ISENet, a lightweight deep learning-based neural network for ISE detection. The model was trained and evaluated using ECG signals and annotations from the PhysioNet long-term ST database, with tenfold cross-validation to ensure robustness and generalizability. Experimental results show that ISENet achieves an average ISE detection accuracy of 83.5%, surpassing benchmark models like VGG19 and ResNet50 while significantly reducing model complexity. This study is the first to apply a deep learning-based neural network for ISE detection using ECG signals from the long-term ST database. Compared to previous feature-engineering and feature-learning approaches, ISENet addresses key limitations in experimental design and methodology, representing a significant advancement in automated myocardial ischemia detection.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03416-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03416-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

长期ECG监测对于检测无症状或间歇性心肌缺血至关重要,因为它可以减轻不可逆的心脏损伤并防止疾病进展。心肌缺血在心电图上表现为短暂性ST段水平和形态改变,称为缺血性ST段改变事件(ISE)。然而,基于ECG信号自动识别ISE具有挑战性,因为其识别极易受到非缺血性ST改变事件的干扰,包括心率相关ST改变事件(HRE),轴移事件(ASE)和传导改变事件(CCE)。为了应对这一挑战,本研究提出了ISENet,这是一种用于ISE检测的轻量级深度学习神经网络。该模型使用来自PhysioNet长期ST数据库的心电信号和注释进行训练和评估,并进行了十倍交叉验证以确保鲁棒性和泛化性。实验结果表明,ISENet在显著降低模型复杂度的同时,平均实现了83.5%的ISE检测准确率,超过了VGG19和ResNet50等基准模型。这项研究首次应用基于深度学习的神经网络,利用长期ST数据库中的ECG信号进行ISE检测。与以前的特征工程和特征学习方法相比,ISENet解决了实验设计和方法上的关键限制,代表了自动化心肌缺血检测的重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ISENet: a deep learning model for detecting ischemic ST changes in long-term ECG monitoring.

Long-term ECG monitoring is crucial for detecting asymptomatic or intermittent myocardial ischemia, as it mitigates irreversible cardiac damage and prevents disease progression. Myocardial ischemia appears on ECG as transient ST-segment level and morphology alterations, known as ischemic ST change events (ISE). However, automatically identifying ISE based on ECG signals is challenging, as its recognition is highly susceptible to interference from non-ischemic ST change events, including heart rate-related ST change events (HRE), axis shift events (ASE), and conduction change events (CCE). To address this challenge, this study proposes ISENet, a lightweight deep learning-based neural network for ISE detection. The model was trained and evaluated using ECG signals and annotations from the PhysioNet long-term ST database, with tenfold cross-validation to ensure robustness and generalizability. Experimental results show that ISENet achieves an average ISE detection accuracy of 83.5%, surpassing benchmark models like VGG19 and ResNet50 while significantly reducing model complexity. This study is the first to apply a deep learning-based neural network for ISE detection using ECG signals from the long-term ST database. Compared to previous feature-engineering and feature-learning approaches, ISENet addresses key limitations in experimental design and methodology, representing a significant advancement in automated myocardial ischemia detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信