Sophie G Shifman, Jennifer L O'Connor, Daniel P Radin, Aryan Sharma, Laura Infante, Francesca Ferraresso, Christian J Kastrup, Daniel A Lawrence, Stella E Tsirka
{"title":"靶向自噬和纤溶酶原激活物抑制剂-1可提高胶质母细胞瘤的存活率并重塑肿瘤微环境。","authors":"Sophie G Shifman, Jennifer L O'Connor, Daniel P Radin, Aryan Sharma, Laura Infante, Francesca Ferraresso, Christian J Kastrup, Daniel A Lawrence, Stella E Tsirka","doi":"10.1186/s13046-025-03473-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glioblastoma (GBM), the most common and aggressive type of primary brain tumor, engages multiple survival mechanisms, including autophagy. GBM exploits both degradative and secretory autophagy pathways to support tumor growth and limit the efficacy of standard-of-care treatments. We have previously shown that lucanthone, a blood-brain barrier permeable autophagy inhibitor, reduces tumor burden. However, although lucanthone-treated tumors are significantly smaller in size, they are not completely obliterated, suggesting compensatory survival mechanisms. A critical factor for GBM survival is communication with the tumor microenvironment (TME), which can be programmed by glioma cells to support growth and immunosuppression. Plasminogen activator inhibitor-1 (PAI-1), a secreted serine protease inhibitor, has been implicated in the progression of several cancers, including GBM, and has been shown to be modulated by autophagy in other cancers. The role of PAI-1 in GBM, namely its relationship with intracellular autophagy dysregulation and extracellular TME as a mechanism of tumor survival, remains incompletely understood.</p><p><strong>Methods: </strong>Murine glioma models were established using intracranial injection of GL261 cells in C57BL/6 mice, followed by autophagy inhibition with intraperitoneal lucanthone and/or PAI-1 inhibition with MDI-2268 chow, and tumors were assessed by immunohistochemistry. In culture, glioma cell lines were challenged with MDI-2268, lucanthone, mitoxantrone, or siRNA-LNPs targeting PAI-1, and assessed by MTT assay, q-RT-PCR, ELISA, invasion assay, immunoblot, and immunocytochemistry. Lysosomal markers and transient transfection with fluorescent vesicular proteins were utilized to evaluate PAI-1 intracellular localization via confocal microscopy. Synergy was analyzed using the HSA model in Combenefit, and statistical analyses included t-tests, ANOVA, and log-rank tests for survival.</p><p><strong>Results: </strong>Lucanthone treatment increased intracellular PAI-1 and autophagy markers while reducing active extracellular PAI-1. PAI-1 colocalized with lysosomal markers, suggesting impaired secretory autophagy. PAI-1 inhibition reduced glioma cell viability and invasion. Combination therapy with lucanthone and MDI-2268 drastically decreased tumor volume, prolonged survival, and promoted a pro-inflammatory state in the tumor microenvironment.</p><p><strong>Conclusions: </strong>Our findings suggest that PAI-1 may be a compensatory survival mechanism in GBM after autophagy inhibition, and that dual targeting of autophagy and PAI-1 disrupts tumor progression and enhances anti-tumor immunity, providing promising evidence for targeting this axis.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"214"},"PeriodicalIF":11.4000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12275254/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeting autophagy and plasminogen activator inhibitor-1 increases survival and remodels the tumor microenvironment in glioblastoma.\",\"authors\":\"Sophie G Shifman, Jennifer L O'Connor, Daniel P Radin, Aryan Sharma, Laura Infante, Francesca Ferraresso, Christian J Kastrup, Daniel A Lawrence, Stella E Tsirka\",\"doi\":\"10.1186/s13046-025-03473-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Glioblastoma (GBM), the most common and aggressive type of primary brain tumor, engages multiple survival mechanisms, including autophagy. GBM exploits both degradative and secretory autophagy pathways to support tumor growth and limit the efficacy of standard-of-care treatments. We have previously shown that lucanthone, a blood-brain barrier permeable autophagy inhibitor, reduces tumor burden. However, although lucanthone-treated tumors are significantly smaller in size, they are not completely obliterated, suggesting compensatory survival mechanisms. A critical factor for GBM survival is communication with the tumor microenvironment (TME), which can be programmed by glioma cells to support growth and immunosuppression. Plasminogen activator inhibitor-1 (PAI-1), a secreted serine protease inhibitor, has been implicated in the progression of several cancers, including GBM, and has been shown to be modulated by autophagy in other cancers. The role of PAI-1 in GBM, namely its relationship with intracellular autophagy dysregulation and extracellular TME as a mechanism of tumor survival, remains incompletely understood.</p><p><strong>Methods: </strong>Murine glioma models were established using intracranial injection of GL261 cells in C57BL/6 mice, followed by autophagy inhibition with intraperitoneal lucanthone and/or PAI-1 inhibition with MDI-2268 chow, and tumors were assessed by immunohistochemistry. In culture, glioma cell lines were challenged with MDI-2268, lucanthone, mitoxantrone, or siRNA-LNPs targeting PAI-1, and assessed by MTT assay, q-RT-PCR, ELISA, invasion assay, immunoblot, and immunocytochemistry. Lysosomal markers and transient transfection with fluorescent vesicular proteins were utilized to evaluate PAI-1 intracellular localization via confocal microscopy. Synergy was analyzed using the HSA model in Combenefit, and statistical analyses included t-tests, ANOVA, and log-rank tests for survival.</p><p><strong>Results: </strong>Lucanthone treatment increased intracellular PAI-1 and autophagy markers while reducing active extracellular PAI-1. PAI-1 colocalized with lysosomal markers, suggesting impaired secretory autophagy. PAI-1 inhibition reduced glioma cell viability and invasion. Combination therapy with lucanthone and MDI-2268 drastically decreased tumor volume, prolonged survival, and promoted a pro-inflammatory state in the tumor microenvironment.</p><p><strong>Conclusions: </strong>Our findings suggest that PAI-1 may be a compensatory survival mechanism in GBM after autophagy inhibition, and that dual targeting of autophagy and PAI-1 disrupts tumor progression and enhances anti-tumor immunity, providing promising evidence for targeting this axis.</p>\",\"PeriodicalId\":50199,\"journal\":{\"name\":\"Journal of Experimental & Clinical Cancer Research\",\"volume\":\"44 1\",\"pages\":\"214\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12275254/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Clinical Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13046-025-03473-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03473-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Targeting autophagy and plasminogen activator inhibitor-1 increases survival and remodels the tumor microenvironment in glioblastoma.
Background: Glioblastoma (GBM), the most common and aggressive type of primary brain tumor, engages multiple survival mechanisms, including autophagy. GBM exploits both degradative and secretory autophagy pathways to support tumor growth and limit the efficacy of standard-of-care treatments. We have previously shown that lucanthone, a blood-brain barrier permeable autophagy inhibitor, reduces tumor burden. However, although lucanthone-treated tumors are significantly smaller in size, they are not completely obliterated, suggesting compensatory survival mechanisms. A critical factor for GBM survival is communication with the tumor microenvironment (TME), which can be programmed by glioma cells to support growth and immunosuppression. Plasminogen activator inhibitor-1 (PAI-1), a secreted serine protease inhibitor, has been implicated in the progression of several cancers, including GBM, and has been shown to be modulated by autophagy in other cancers. The role of PAI-1 in GBM, namely its relationship with intracellular autophagy dysregulation and extracellular TME as a mechanism of tumor survival, remains incompletely understood.
Methods: Murine glioma models were established using intracranial injection of GL261 cells in C57BL/6 mice, followed by autophagy inhibition with intraperitoneal lucanthone and/or PAI-1 inhibition with MDI-2268 chow, and tumors were assessed by immunohistochemistry. In culture, glioma cell lines were challenged with MDI-2268, lucanthone, mitoxantrone, or siRNA-LNPs targeting PAI-1, and assessed by MTT assay, q-RT-PCR, ELISA, invasion assay, immunoblot, and immunocytochemistry. Lysosomal markers and transient transfection with fluorescent vesicular proteins were utilized to evaluate PAI-1 intracellular localization via confocal microscopy. Synergy was analyzed using the HSA model in Combenefit, and statistical analyses included t-tests, ANOVA, and log-rank tests for survival.
Results: Lucanthone treatment increased intracellular PAI-1 and autophagy markers while reducing active extracellular PAI-1. PAI-1 colocalized with lysosomal markers, suggesting impaired secretory autophagy. PAI-1 inhibition reduced glioma cell viability and invasion. Combination therapy with lucanthone and MDI-2268 drastically decreased tumor volume, prolonged survival, and promoted a pro-inflammatory state in the tumor microenvironment.
Conclusions: Our findings suggest that PAI-1 may be a compensatory survival mechanism in GBM after autophagy inhibition, and that dual targeting of autophagy and PAI-1 disrupts tumor progression and enhances anti-tumor immunity, providing promising evidence for targeting this axis.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.