Shoudan Zhang, Lin Zhang, Ning Guan, Xu Feng, Miaomiao Lu, Yanyun Wang
{"title":"揭示tam衍生的细胞外囊泡通过Treg极化和免疫抑制在胶质瘤进展中的作用。","authors":"Shoudan Zhang, Lin Zhang, Ning Guan, Xu Feng, Miaomiao Lu, Yanyun Wang","doi":"10.1038/s41388-025-03497-8","DOIUrl":null,"url":null,"abstract":"In the context of gliomas, tumor-associated macrophages (TAMs) and regulatory T cells (Tregs) play crucial roles in shaping the tumor microenvironment (TME). This study focused on elucidating the mechanism by which TAM-derived extracellular vesicles (EVs) influence Treg differentiation and contribute to glioma progression. Through comprehensive single-cell RNA sequencing (scRNA-seq) analysis, the glioma TME was characterized by an abundance of TAMs exhibiting M2 polarization and increased Treg differentiation. Notably, TAM EVs were identified as potent inducers of Treg differentiation, with the downregulation of Bactericidal/Permeability-Increasing protein (BPI) being associated with this process. In vivo experiments utilizing a mouse model of glioma further demonstrated that TAM-derived EVs promoted glioma growth by enhancing Treg-mediated immunosuppression while dampening pro-inflammatory responses. This study highlights the critical role of TAM-derived EVs in modulating Treg differentiation and supporting glioma progression, suggesting that interventions targeting TAM EVs or regulating BPI expression could offer novel therapeutic avenues for combating immune suppression and inhibiting glioma development.","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":"44 36","pages":"3364-3385"},"PeriodicalIF":7.3000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the role of TAM-derived extracellular vesicles in glioma progression through Treg polarization and immune suppression\",\"authors\":\"Shoudan Zhang, Lin Zhang, Ning Guan, Xu Feng, Miaomiao Lu, Yanyun Wang\",\"doi\":\"10.1038/s41388-025-03497-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of gliomas, tumor-associated macrophages (TAMs) and regulatory T cells (Tregs) play crucial roles in shaping the tumor microenvironment (TME). This study focused on elucidating the mechanism by which TAM-derived extracellular vesicles (EVs) influence Treg differentiation and contribute to glioma progression. Through comprehensive single-cell RNA sequencing (scRNA-seq) analysis, the glioma TME was characterized by an abundance of TAMs exhibiting M2 polarization and increased Treg differentiation. Notably, TAM EVs were identified as potent inducers of Treg differentiation, with the downregulation of Bactericidal/Permeability-Increasing protein (BPI) being associated with this process. In vivo experiments utilizing a mouse model of glioma further demonstrated that TAM-derived EVs promoted glioma growth by enhancing Treg-mediated immunosuppression while dampening pro-inflammatory responses. This study highlights the critical role of TAM-derived EVs in modulating Treg differentiation and supporting glioma progression, suggesting that interventions targeting TAM EVs or regulating BPI expression could offer novel therapeutic avenues for combating immune suppression and inhibiting glioma development.\",\"PeriodicalId\":19524,\"journal\":{\"name\":\"Oncogene\",\"volume\":\"44 36\",\"pages\":\"3364-3385\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncogene\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41388-025-03497-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41388-025-03497-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Unveiling the role of TAM-derived extracellular vesicles in glioma progression through Treg polarization and immune suppression
In the context of gliomas, tumor-associated macrophages (TAMs) and regulatory T cells (Tregs) play crucial roles in shaping the tumor microenvironment (TME). This study focused on elucidating the mechanism by which TAM-derived extracellular vesicles (EVs) influence Treg differentiation and contribute to glioma progression. Through comprehensive single-cell RNA sequencing (scRNA-seq) analysis, the glioma TME was characterized by an abundance of TAMs exhibiting M2 polarization and increased Treg differentiation. Notably, TAM EVs were identified as potent inducers of Treg differentiation, with the downregulation of Bactericidal/Permeability-Increasing protein (BPI) being associated with this process. In vivo experiments utilizing a mouse model of glioma further demonstrated that TAM-derived EVs promoted glioma growth by enhancing Treg-mediated immunosuppression while dampening pro-inflammatory responses. This study highlights the critical role of TAM-derived EVs in modulating Treg differentiation and supporting glioma progression, suggesting that interventions targeting TAM EVs or regulating BPI expression could offer novel therapeutic avenues for combating immune suppression and inhibiting glioma development.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.