氮掺杂石墨烯中嵌入FeNi双金属二聚体增强氧还原催化:密度泛函理论研究。

IF 2.2 3区 化学 Q3 CHEMISTRY, PHYSICAL
Wei Luo, Chuanji Zhou, Shuang Hao, Cheng Li, Minghui Yao
{"title":"氮掺杂石墨烯中嵌入FeNi双金属二聚体增强氧还原催化:密度泛函理论研究。","authors":"Wei Luo,&nbsp;Chuanji Zhou,&nbsp;Shuang Hao,&nbsp;Cheng Li,&nbsp;Minghui Yao","doi":"10.1002/cphc.202500299","DOIUrl":null,"url":null,"abstract":"<p>Developing highly effective single-atom catalysts for oxygen reduction reaction (ORR) is critical to improve fuel cell efficiency. Hence, this study systematically investigates ORR performance of single-metal (FeN<sub>4</sub>-G, NiN<sub>4</sub>-G) and dual-metal (FeNiN<sub>3</sub>-G) catalysts embedded in nitrogen-doped graphene through density functional theory (DFT) calculations. Through analysis of ORR intermediates adsorption on M-N-C surfaces, the Gibbs free energy changes, density of states, and electron transfer profiles of catalytic systems are investigated. DFT calculations reveal that while the over-binding of FeN<sub>4</sub>-G and intermediates impedes desorption kinetics and weak interactions of NiN<sub>4</sub>-G favor the less efficient 2e<sup>−</sup> pathway, FeNiN<sub>3</sub>-G addresses these limitations through synergistic Fe-Ni electronic coupling. By optimizing d-band alignment and charge redistribution, FeNiN<sub>3</sub>-G lowers the rate-determining step energy barrier and reduces overpotential. Moreover, the dual-metal configuration promotes selective 4e<sup>−</sup> ORR via efficient O<span></span>O bond cleavage. This work provides mechanistic insights for designing high-efficiency M-N-C electrocatalysts for energy conversion technologies.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":"26 18","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FeNi Dual-Metal Dimer Embedded in Nitrogen-Doped Graphene for Enhanced Oxygen Reduction Catalysis: A Density Functional Theory Study\",\"authors\":\"Wei Luo,&nbsp;Chuanji Zhou,&nbsp;Shuang Hao,&nbsp;Cheng Li,&nbsp;Minghui Yao\",\"doi\":\"10.1002/cphc.202500299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Developing highly effective single-atom catalysts for oxygen reduction reaction (ORR) is critical to improve fuel cell efficiency. Hence, this study systematically investigates ORR performance of single-metal (FeN<sub>4</sub>-G, NiN<sub>4</sub>-G) and dual-metal (FeNiN<sub>3</sub>-G) catalysts embedded in nitrogen-doped graphene through density functional theory (DFT) calculations. Through analysis of ORR intermediates adsorption on M-N-C surfaces, the Gibbs free energy changes, density of states, and electron transfer profiles of catalytic systems are investigated. DFT calculations reveal that while the over-binding of FeN<sub>4</sub>-G and intermediates impedes desorption kinetics and weak interactions of NiN<sub>4</sub>-G favor the less efficient 2e<sup>−</sup> pathway, FeNiN<sub>3</sub>-G addresses these limitations through synergistic Fe-Ni electronic coupling. By optimizing d-band alignment and charge redistribution, FeNiN<sub>3</sub>-G lowers the rate-determining step energy barrier and reduces overpotential. Moreover, the dual-metal configuration promotes selective 4e<sup>−</sup> ORR via efficient O<span></span>O bond cleavage. This work provides mechanistic insights for designing high-efficiency M-N-C electrocatalysts for energy conversion technologies.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\"26 18\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cphc.202500299\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cphc.202500299","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发高效的单原子氧还原反应催化剂是提高燃料电池效率的关键。因此,本研究通过密度泛函理论(DFT)计算系统地研究了嵌入氮掺杂石墨烯中的单金属(FeN4-G, NiN4-G)和双金属(FeNiN3-G)催化剂的ORR性能。通过分析ORR中间体在M-N-C表面的吸附,研究了催化体系的吉布斯自由能变化、态密度和电子转移谱。DFT计算表明,虽然FeN4-G和中间体的过度结合阻碍了解吸动力学,并且NiN4-G的弱相互作用有利于效率较低的2e-途径,但FeNiN3-G通过协同Fe-Ni电子耦合解决了这些限制。通过优化d波段对准和电荷再分配,FeNiN3-G降低了速率决定阶跃能垒,降低了过电位。此外,双金属结构通过有效的O - O键解理促进了选择性的4e- ORR。这项工作为设计用于能量转换技术的高效M-N-C电催化剂提供了机理见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

FeNi Dual-Metal Dimer Embedded in Nitrogen-Doped Graphene for Enhanced Oxygen Reduction Catalysis: A Density Functional Theory Study

FeNi Dual-Metal Dimer Embedded in Nitrogen-Doped Graphene for Enhanced Oxygen Reduction Catalysis: A Density Functional Theory Study

FeNi Dual-Metal Dimer Embedded in Nitrogen-Doped Graphene for Enhanced Oxygen Reduction Catalysis: A Density Functional Theory Study

FeNi Dual-Metal Dimer Embedded in Nitrogen-Doped Graphene for Enhanced Oxygen Reduction Catalysis: A Density Functional Theory Study

Developing highly effective single-atom catalysts for oxygen reduction reaction (ORR) is critical to improve fuel cell efficiency. Hence, this study systematically investigates ORR performance of single-metal (FeN4-G, NiN4-G) and dual-metal (FeNiN3-G) catalysts embedded in nitrogen-doped graphene through density functional theory (DFT) calculations. Through analysis of ORR intermediates adsorption on M-N-C surfaces, the Gibbs free energy changes, density of states, and electron transfer profiles of catalytic systems are investigated. DFT calculations reveal that while the over-binding of FeN4-G and intermediates impedes desorption kinetics and weak interactions of NiN4-G favor the less efficient 2e pathway, FeNiN3-G addresses these limitations through synergistic Fe-Ni electronic coupling. By optimizing d-band alignment and charge redistribution, FeNiN3-G lowers the rate-determining step energy barrier and reduces overpotential. Moreover, the dual-metal configuration promotes selective 4e ORR via efficient OO bond cleavage. This work provides mechanistic insights for designing high-efficiency M-N-C electrocatalysts for energy conversion technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信