{"title":"SCNT:一个用于单细胞和空间转录组学数据分析和可视化的R包。","authors":"Jianbo Qing, Jialu Wu, Yafeng Li, Junnan Wu","doi":"10.1186/s12859-025-06209-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The emergence of single-cell (SC) and spatial transcriptomics (ST) has revolutionized our understanding of gene expression dynamics in complex tissues. However, it also presents challenges for data analysis and visualization, particularly due to the complexity of ST data and the diversity of analysis platforms. The SCNT (Single-Cell, Single-Nucleus, and Spatial Transcriptomics Analysis and Visualization Tools) package was developed to address these challenges by providing an efficient and user-friendly tool for processing, analyzing, and visualizing SC and ST data.</p><p><strong>Results: </strong>SCNT is an R-based package that integrates widely used tools such as Seurat and ggplot2, enabling seamless conversion between Seurat and H5ad formats. The package supports high-resolution spatial visualization, including customizable gene expression and clustering plots. SCNT also simplifies key data analysis steps, such as quality control, dimensionality reduction, and doublet detection, significantly enhancing workflow efficiency. We tested SCNT on publicly available PBMC dataset, Visum and Visium HD human kidney tissue data, demonstrating its effectiveness.</p><p><strong>Conclusions: </strong>SCNT offers a valuable tool for researchers exploring SC and ST data. Its simplicity, flexibility, and powerful visualization capabilities provide a streamlined workflow for both novice and advanced users. Future developments will focus on expanding support for additional ST platforms and enhancing multi-omics data integration.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"184"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12273005/pdf/","citationCount":"0","resultStr":"{\"title\":\"SCNT: an R package for data analysis and visualization of single-cell and spatial transcriptomics.\",\"authors\":\"Jianbo Qing, Jialu Wu, Yafeng Li, Junnan Wu\",\"doi\":\"10.1186/s12859-025-06209-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The emergence of single-cell (SC) and spatial transcriptomics (ST) has revolutionized our understanding of gene expression dynamics in complex tissues. However, it also presents challenges for data analysis and visualization, particularly due to the complexity of ST data and the diversity of analysis platforms. The SCNT (Single-Cell, Single-Nucleus, and Spatial Transcriptomics Analysis and Visualization Tools) package was developed to address these challenges by providing an efficient and user-friendly tool for processing, analyzing, and visualizing SC and ST data.</p><p><strong>Results: </strong>SCNT is an R-based package that integrates widely used tools such as Seurat and ggplot2, enabling seamless conversion between Seurat and H5ad formats. The package supports high-resolution spatial visualization, including customizable gene expression and clustering plots. SCNT also simplifies key data analysis steps, such as quality control, dimensionality reduction, and doublet detection, significantly enhancing workflow efficiency. We tested SCNT on publicly available PBMC dataset, Visum and Visium HD human kidney tissue data, demonstrating its effectiveness.</p><p><strong>Conclusions: </strong>SCNT offers a valuable tool for researchers exploring SC and ST data. Its simplicity, flexibility, and powerful visualization capabilities provide a streamlined workflow for both novice and advanced users. Future developments will focus on expanding support for additional ST platforms and enhancing multi-omics data integration.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"26 1\",\"pages\":\"184\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12273005/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-025-06209-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06209-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
SCNT: an R package for data analysis and visualization of single-cell and spatial transcriptomics.
Background: The emergence of single-cell (SC) and spatial transcriptomics (ST) has revolutionized our understanding of gene expression dynamics in complex tissues. However, it also presents challenges for data analysis and visualization, particularly due to the complexity of ST data and the diversity of analysis platforms. The SCNT (Single-Cell, Single-Nucleus, and Spatial Transcriptomics Analysis and Visualization Tools) package was developed to address these challenges by providing an efficient and user-friendly tool for processing, analyzing, and visualizing SC and ST data.
Results: SCNT is an R-based package that integrates widely used tools such as Seurat and ggplot2, enabling seamless conversion between Seurat and H5ad formats. The package supports high-resolution spatial visualization, including customizable gene expression and clustering plots. SCNT also simplifies key data analysis steps, such as quality control, dimensionality reduction, and doublet detection, significantly enhancing workflow efficiency. We tested SCNT on publicly available PBMC dataset, Visum and Visium HD human kidney tissue data, demonstrating its effectiveness.
Conclusions: SCNT offers a valuable tool for researchers exploring SC and ST data. Its simplicity, flexibility, and powerful visualization capabilities provide a streamlined workflow for both novice and advanced users. Future developments will focus on expanding support for additional ST platforms and enhancing multi-omics data integration.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.