扩散过程作为边界的可微泛函的时变边界穿越概率

IF 1.2 2区 数学 Q3 STATISTICS & PROBABILITY
V. Liang, K. Borovkov
{"title":"扩散过程作为边界的可微泛函的时变边界穿越概率","authors":"V. Liang,&nbsp;K. Borovkov","doi":"10.1016/j.spa.2025.104742","DOIUrl":null,"url":null,"abstract":"<div><div>The paper analyses the sensitivity of the finite time horizon boundary non-crossing probability <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>g</mi><mo>)</mo></mrow></mrow></math></span> of a general time-inhomogeneous, one-dimensional diffusion process to perturbations of the boundary <span><math><mi>g</mi></math></span>. We prove that, for time-dependent boundaries <span><math><mrow><mi>g</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></mrow></math></span> this probability is Gâteaux differentiable in directions <span><math><mrow><mi>h</mi><mo>∈</mo><mi>H</mi><mo>∪</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> and Fréchet-differentiable in directions <span><math><mrow><mi>h</mi><mo>∈</mo><mi>H</mi><mo>,</mo></mrow></math></span> where <span><math><mi>H</mi></math></span> is the Cameron–Martin space, and derive a compact representation for the derivative of <span><math><mi>F</mi></math></span>. Our results allow one to approximate <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>g</mi><mo>)</mo></mrow></mrow></math></span> using boundaries <span><math><mover><mrow><mi>g</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> that are close to <span><math><mi>g</mi></math></span> and for which the computation of <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mover><mrow><mi>g</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span> is feasible. We also obtain auxiliary results of independent interest in both probability theory and PDE theory.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"190 ","pages":"Article 104742"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On time-dependent boundary crossing probabilities of diffusion processes as differentiable functionals of the boundary\",\"authors\":\"V. Liang,&nbsp;K. Borovkov\",\"doi\":\"10.1016/j.spa.2025.104742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The paper analyses the sensitivity of the finite time horizon boundary non-crossing probability <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>g</mi><mo>)</mo></mrow></mrow></math></span> of a general time-inhomogeneous, one-dimensional diffusion process to perturbations of the boundary <span><math><mi>g</mi></math></span>. We prove that, for time-dependent boundaries <span><math><mrow><mi>g</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo></mrow></math></span> this probability is Gâteaux differentiable in directions <span><math><mrow><mi>h</mi><mo>∈</mo><mi>H</mi><mo>∪</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> and Fréchet-differentiable in directions <span><math><mrow><mi>h</mi><mo>∈</mo><mi>H</mi><mo>,</mo></mrow></math></span> where <span><math><mi>H</mi></math></span> is the Cameron–Martin space, and derive a compact representation for the derivative of <span><math><mi>F</mi></math></span>. Our results allow one to approximate <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>g</mi><mo>)</mo></mrow></mrow></math></span> using boundaries <span><math><mover><mrow><mi>g</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> that are close to <span><math><mi>g</mi></math></span> and for which the computation of <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mover><mrow><mi>g</mi></mrow><mrow><mo>̄</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span> is feasible. We also obtain auxiliary results of independent interest in both probability theory and PDE theory.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"190 \",\"pages\":\"Article 104742\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414925001851\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001851","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了一般时间非齐次一维扩散过程的有限时间视界边界非跨越概率F(g)对边界g扰动的敏感性。证明了对于时变边界g∈C2,该概率在h∈h∪C2方向上是g可微的,在h∈h方向上是fr可微的,其中h为Cameron-Martin空间,并推导出F的导数的紧表示形式。我们的结果允许人们使用接近g的边界,并且F(h)的计算是可行的,来近似F(g)。我们还在概率论和偏微分方程理论中获得了独立感兴趣的辅助结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On time-dependent boundary crossing probabilities of diffusion processes as differentiable functionals of the boundary
The paper analyses the sensitivity of the finite time horizon boundary non-crossing probability F(g) of a general time-inhomogeneous, one-dimensional diffusion process to perturbations of the boundary g. We prove that, for time-dependent boundaries gC2, this probability is Gâteaux differentiable in directions hHC2 and Fréchet-differentiable in directions hH, where H is the Cameron–Martin space, and derive a compact representation for the derivative of F. Our results allow one to approximate F(g) using boundaries ḡ that are close to g and for which the computation of F(ḡ) is feasible. We also obtain auxiliary results of independent interest in both probability theory and PDE theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信