分层推理增强的少镜头多模态情感分析

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jiali You , Haoran Li , Jiawen Deng , Wei Li , Yuanyuan He , Fuji Ren
{"title":"分层推理增强的少镜头多模态情感分析","authors":"Jiali You ,&nbsp;Haoran Li ,&nbsp;Jiawen Deng ,&nbsp;Wei Li ,&nbsp;Yuanyuan He ,&nbsp;Fuji Ren","doi":"10.1016/j.neucom.2025.130883","DOIUrl":null,"url":null,"abstract":"<div><div>Few-shot Multimodal Sentiment Analysis (FMSA) aims to predict sentiment with minimal labeled data by integrating multiple modalities, such as text and images. While recent FMSA methods have focused on transforming non-linguistic information (e.g., images) into text and leveraging language models to convert them into few-shot filling tasks, they still struggle to capture the latent sentiment information in image–text pairs. These limitations hinder their effectiveness, particularly in real-world applications where labeled data is scarce. To address these limitations, we propose a novel approach, Hierarchical Reasoning Enhanced Few-shot Multimodal Sentiment Analysis (HRE-FMSA), which consists of three main components: the Hierarchical Reasoning Framework (HRF), the Hierarchical Reasoning Representation Fusion Network (H2RF-Net), and label prediction. Concretely, the HRF module excavates latent sentiment information from image–text pairs at three levels: topic/aspect, opinion, and sentiment. Then, H2RF-Net integrates latent sentiment information with the original image–text pairs to generate a prompt, which is fed into a pre-trained Language Model to obtain the final sentiment type. In the experiment, we conducted comprehensive evaluations on three sentence-level datasets and two aspect-level datasets, demonstrating the effectiveness and applicability of HRE-FMSA.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"651 ","pages":"Article 130883"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Reasoning Enhanced Few-Shot Multimodal Sentiment Analysis\",\"authors\":\"Jiali You ,&nbsp;Haoran Li ,&nbsp;Jiawen Deng ,&nbsp;Wei Li ,&nbsp;Yuanyuan He ,&nbsp;Fuji Ren\",\"doi\":\"10.1016/j.neucom.2025.130883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Few-shot Multimodal Sentiment Analysis (FMSA) aims to predict sentiment with minimal labeled data by integrating multiple modalities, such as text and images. While recent FMSA methods have focused on transforming non-linguistic information (e.g., images) into text and leveraging language models to convert them into few-shot filling tasks, they still struggle to capture the latent sentiment information in image–text pairs. These limitations hinder their effectiveness, particularly in real-world applications where labeled data is scarce. To address these limitations, we propose a novel approach, Hierarchical Reasoning Enhanced Few-shot Multimodal Sentiment Analysis (HRE-FMSA), which consists of three main components: the Hierarchical Reasoning Framework (HRF), the Hierarchical Reasoning Representation Fusion Network (H2RF-Net), and label prediction. Concretely, the HRF module excavates latent sentiment information from image–text pairs at three levels: topic/aspect, opinion, and sentiment. Then, H2RF-Net integrates latent sentiment information with the original image–text pairs to generate a prompt, which is fed into a pre-trained Language Model to obtain the final sentiment type. In the experiment, we conducted comprehensive evaluations on three sentence-level datasets and two aspect-level datasets, demonstrating the effectiveness and applicability of HRE-FMSA.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"651 \",\"pages\":\"Article 130883\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225015553\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225015553","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

少射多模态情感分析(FMSA)旨在通过整合文本和图像等多种模态,以最少的标记数据预测情感。虽然最近的FMSA方法专注于将非语言信息(例如图像)转换为文本,并利用语言模型将其转换为少数镜头填充任务,但它们仍然难以捕获图像-文本对中的潜在情感信息。这些限制阻碍了它们的有效性,特别是在标记数据稀缺的实际应用中。为了解决这些限制,我们提出了一种新的方法,分层推理增强少镜头多模态情感分析(HRE-FMSA),它由三个主要组成部分组成:分层推理框架(HRF),分层推理表示融合网络(H2RF-Net)和标签预测。具体来说,HRF模块从三个层面挖掘图像-文本对的潜在情感信息:主题/方面、观点和情感。然后,H2RF-Net将潜在情感信息与原始图像-文本对集成,生成提示,并将提示输入预训练的语言模型,从而获得最终的情感类型。在实验中,我们对3个句子级数据集和2个方面级数据集进行了综合评价,验证了HRE-FMSA的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Reasoning Enhanced Few-Shot Multimodal Sentiment Analysis
Few-shot Multimodal Sentiment Analysis (FMSA) aims to predict sentiment with minimal labeled data by integrating multiple modalities, such as text and images. While recent FMSA methods have focused on transforming non-linguistic information (e.g., images) into text and leveraging language models to convert them into few-shot filling tasks, they still struggle to capture the latent sentiment information in image–text pairs. These limitations hinder their effectiveness, particularly in real-world applications where labeled data is scarce. To address these limitations, we propose a novel approach, Hierarchical Reasoning Enhanced Few-shot Multimodal Sentiment Analysis (HRE-FMSA), which consists of three main components: the Hierarchical Reasoning Framework (HRF), the Hierarchical Reasoning Representation Fusion Network (H2RF-Net), and label prediction. Concretely, the HRF module excavates latent sentiment information from image–text pairs at three levels: topic/aspect, opinion, and sentiment. Then, H2RF-Net integrates latent sentiment information with the original image–text pairs to generate a prompt, which is fed into a pre-trained Language Model to obtain the final sentiment type. In the experiment, we conducted comprehensive evaluations on three sentence-level datasets and two aspect-level datasets, demonstrating the effectiveness and applicability of HRE-FMSA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信