{"title":"具有包含加工集限制和容量不相同的混合批处理机的调度","authors":"Jinwen Ou, Weidong Li","doi":"10.1016/j.ejor.2025.07.012","DOIUrl":null,"url":null,"abstract":"A new batch scheduling problem, name mixed batch scheduling problem, is received attentions recently. In a mixed batch scheduling model, the processing time of a job batch <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mi>H</mml:mi></mml:math> is defined as <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mrow><mml:mi>α</mml:mi><mml:msub><mml:mrow><mml:mo>max</mml:mo></mml:mrow><mml:mrow><mml:mi>j</mml:mi><mml:mo>∈</mml:mo><mml:mi>H</mml:mi></mml:mrow></mml:msub><mml:mrow><mml:mo>{</mml:mo><mml:msub><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mi>j</mml:mi></mml:mrow></mml:msub><mml:mo>}</mml:mo></mml:mrow><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">+</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>α</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:msub><mml:mrow><mml:mo>∑</mml:mo></mml:mrow><mml:mrow><mml:mi>j</mml:mi><mml:mo>∈</mml:mo><mml:mi>H</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mi>j</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>, where <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:mrow><mml:mi>α</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∈</mml:mo><mml:mrow><mml:mo>[</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo>]</mml:mo></mml:mrow></mml:mrow></mml:math> is a constant. In other words, the processing time of a job batch is the weighted sum of the maximum processing time and the total processing time of jobs in the batch. In this paper, we study the problem of scheduling mixed batch machines with non-identical capacities under inclusive processing set restrictions, where the objective is to minimize the makespan of finishing all the jobs. We present a fast approximation algorithm with a performance ratio of <mml:math altimg=\"si4.svg\" display=\"inline\"><mml:mrow><mml:mn>4</mml:mn><mml:mo>/</mml:mo><mml:mn>3</mml:mn><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">+</mml:mo><mml:mi>α</mml:mi></mml:mrow></mml:math> for the problem, which improves up the existing performance bounds in the literature. By providing a technical lemma, we are able to develop the first polynomial time approximation scheme (PTAS) for the problem. We also design linear-time approximation schemes for two important special cases of the problem.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"109 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scheduling mixed batch machines with inclusive processing set restrictions and non-identical capacities\",\"authors\":\"Jinwen Ou, Weidong Li\",\"doi\":\"10.1016/j.ejor.2025.07.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new batch scheduling problem, name mixed batch scheduling problem, is received attentions recently. In a mixed batch scheduling model, the processing time of a job batch <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mi>H</mml:mi></mml:math> is defined as <mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>α</mml:mi><mml:msub><mml:mrow><mml:mo>max</mml:mo></mml:mrow><mml:mrow><mml:mi>j</mml:mi><mml:mo>∈</mml:mo><mml:mi>H</mml:mi></mml:mrow></mml:msub><mml:mrow><mml:mo>{</mml:mo><mml:msub><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mi>j</mml:mi></mml:mrow></mml:msub><mml:mo>}</mml:mo></mml:mrow><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">+</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>α</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:msub><mml:mrow><mml:mo>∑</mml:mo></mml:mrow><mml:mrow><mml:mi>j</mml:mi><mml:mo>∈</mml:mo><mml:mi>H</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mi>j</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>, where <mml:math altimg=\\\"si3.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>α</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">∈</mml:mo><mml:mrow><mml:mo>[</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo>]</mml:mo></mml:mrow></mml:mrow></mml:math> is a constant. In other words, the processing time of a job batch is the weighted sum of the maximum processing time and the total processing time of jobs in the batch. In this paper, we study the problem of scheduling mixed batch machines with non-identical capacities under inclusive processing set restrictions, where the objective is to minimize the makespan of finishing all the jobs. We present a fast approximation algorithm with a performance ratio of <mml:math altimg=\\\"si4.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mn>4</mml:mn><mml:mo>/</mml:mo><mml:mn>3</mml:mn><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">+</mml:mo><mml:mi>α</mml:mi></mml:mrow></mml:math> for the problem, which improves up the existing performance bounds in the literature. By providing a technical lemma, we are able to develop the first polynomial time approximation scheme (PTAS) for the problem. We also design linear-time approximation schemes for two important special cases of the problem.\",\"PeriodicalId\":55161,\"journal\":{\"name\":\"European Journal of Operational Research\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Operational Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ejor.2025.07.012\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2025.07.012","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Scheduling mixed batch machines with inclusive processing set restrictions and non-identical capacities
A new batch scheduling problem, name mixed batch scheduling problem, is received attentions recently. In a mixed batch scheduling model, the processing time of a job batch H is defined as αmaxj∈H{pj}+(1−α)∑j∈Hpj, where α∈[0,1] is a constant. In other words, the processing time of a job batch is the weighted sum of the maximum processing time and the total processing time of jobs in the batch. In this paper, we study the problem of scheduling mixed batch machines with non-identical capacities under inclusive processing set restrictions, where the objective is to minimize the makespan of finishing all the jobs. We present a fast approximation algorithm with a performance ratio of 4/3+α for the problem, which improves up the existing performance bounds in the literature. By providing a technical lemma, we are able to develop the first polynomial time approximation scheme (PTAS) for the problem. We also design linear-time approximation schemes for two important special cases of the problem.
期刊介绍:
The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.