Erica V. Ely, Kristin L. Lenz, Sophie G. Paradi, Seth Ack, Abraham Behrmann, Sarah Dunivan, Lauryn Braxton, Wolfgang Liedtke, Yong Chen, Kelsey H. Collins, Farshid Guilak
{"title":"软骨细胞特异性敲除Piezo1和Piezo2对小鼠创伤后骨关节炎结构损伤和疼痛有保护作用","authors":"Erica V. Ely, Kristin L. Lenz, Sophie G. Paradi, Seth Ack, Abraham Behrmann, Sarah Dunivan, Lauryn Braxton, Wolfgang Liedtke, Yong Chen, Kelsey H. Collins, Farshid Guilak","doi":"10.1186/s13075-025-03620-w","DOIUrl":null,"url":null,"abstract":"Osteoarthritis (OA) is a debilitating joint disease characterized by cartilage degeneration, synovial inflammation, and bone remodeling, with limited therapeutic options targeting the underlying pathophysiology. Mechanosensitive ion channels Piezo1 and Piezo2 play crucial roles in chondrocyte responses to mechanical stress, mediating mechanotransduction pathways that influence chondrocyte survival, matrix production, and inflammatory signaling, but their distinct contributions to OA pathogenesis remain unclear. Using inducible, chondrocyte-specific Aggrecan-Cre (Acan) mice, we investigated Piezo1, Piezo2, and combined Piezo1/2 conditional knockouts (cKOs) using the destabilization of the medial meniscus (DMM) model of post-traumatic OA in male and female mice. Pain and behavioral assessments were conducted at four time points to evaluate OA progression, while cartilage damage, bone remodeling, and synovial inflammation were assessed at the final endpoint of 28 weeks. Statistical analyses included one-way and two-way ANOVA with Tukey’s multiple comparison test. Piezo1 cKO delayed pain onset but ultimately exacerbated cartilage degradation and synovitis, emphasizing its dual role in protective and pathogenic mechanotransduction. While the Piezo2 cKO reduced pain and preserved activity, it failed to protect cartilage. Notably, Piezo1/2 cKO provided the greatest protection against cartilage degeneration, synovitis, and pain. Micro-computed tomography analyses revealed that Piezo2 is critical for maintaining trabecular bone integrity, with a Piezo2 cKO leading to decreased bone volume, thickness, and density, independent of injury. Piezo2 cKO also reduced normal meniscal ossification that occurs with age in mice. In contrast, a Piezo1/2 cKO normalized most bone remodeling parameters observed in Piezo2 cKO mice but did not restore medial tibial plateau thickness, highlighting Piezo2’s essential role in bone structure. These findings demonstrate the overlapping and compensatory roles of Piezo1 and Piezo2 in OA pathogenesis. Dual inhibition of Piezo1 and Piezo2 may offer a novel, effective therapeutic strategy targeting both structural and symptomatic aspects of the disease.","PeriodicalId":8419,"journal":{"name":"Arthritis Research & Therapy","volume":"659 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chondrocyte-specific knockout of Piezo1 and Piezo2 protects against post-traumatic osteoarthritis structural damage and pain in mice\",\"authors\":\"Erica V. Ely, Kristin L. Lenz, Sophie G. Paradi, Seth Ack, Abraham Behrmann, Sarah Dunivan, Lauryn Braxton, Wolfgang Liedtke, Yong Chen, Kelsey H. Collins, Farshid Guilak\",\"doi\":\"10.1186/s13075-025-03620-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Osteoarthritis (OA) is a debilitating joint disease characterized by cartilage degeneration, synovial inflammation, and bone remodeling, with limited therapeutic options targeting the underlying pathophysiology. Mechanosensitive ion channels Piezo1 and Piezo2 play crucial roles in chondrocyte responses to mechanical stress, mediating mechanotransduction pathways that influence chondrocyte survival, matrix production, and inflammatory signaling, but their distinct contributions to OA pathogenesis remain unclear. Using inducible, chondrocyte-specific Aggrecan-Cre (Acan) mice, we investigated Piezo1, Piezo2, and combined Piezo1/2 conditional knockouts (cKOs) using the destabilization of the medial meniscus (DMM) model of post-traumatic OA in male and female mice. Pain and behavioral assessments were conducted at four time points to evaluate OA progression, while cartilage damage, bone remodeling, and synovial inflammation were assessed at the final endpoint of 28 weeks. Statistical analyses included one-way and two-way ANOVA with Tukey’s multiple comparison test. Piezo1 cKO delayed pain onset but ultimately exacerbated cartilage degradation and synovitis, emphasizing its dual role in protective and pathogenic mechanotransduction. While the Piezo2 cKO reduced pain and preserved activity, it failed to protect cartilage. Notably, Piezo1/2 cKO provided the greatest protection against cartilage degeneration, synovitis, and pain. Micro-computed tomography analyses revealed that Piezo2 is critical for maintaining trabecular bone integrity, with a Piezo2 cKO leading to decreased bone volume, thickness, and density, independent of injury. Piezo2 cKO also reduced normal meniscal ossification that occurs with age in mice. In contrast, a Piezo1/2 cKO normalized most bone remodeling parameters observed in Piezo2 cKO mice but did not restore medial tibial plateau thickness, highlighting Piezo2’s essential role in bone structure. These findings demonstrate the overlapping and compensatory roles of Piezo1 and Piezo2 in OA pathogenesis. Dual inhibition of Piezo1 and Piezo2 may offer a novel, effective therapeutic strategy targeting both structural and symptomatic aspects of the disease.\",\"PeriodicalId\":8419,\"journal\":{\"name\":\"Arthritis Research & Therapy\",\"volume\":\"659 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arthritis Research & Therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13075-025-03620-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthritis Research & Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13075-025-03620-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Chondrocyte-specific knockout of Piezo1 and Piezo2 protects against post-traumatic osteoarthritis structural damage and pain in mice
Osteoarthritis (OA) is a debilitating joint disease characterized by cartilage degeneration, synovial inflammation, and bone remodeling, with limited therapeutic options targeting the underlying pathophysiology. Mechanosensitive ion channels Piezo1 and Piezo2 play crucial roles in chondrocyte responses to mechanical stress, mediating mechanotransduction pathways that influence chondrocyte survival, matrix production, and inflammatory signaling, but their distinct contributions to OA pathogenesis remain unclear. Using inducible, chondrocyte-specific Aggrecan-Cre (Acan) mice, we investigated Piezo1, Piezo2, and combined Piezo1/2 conditional knockouts (cKOs) using the destabilization of the medial meniscus (DMM) model of post-traumatic OA in male and female mice. Pain and behavioral assessments were conducted at four time points to evaluate OA progression, while cartilage damage, bone remodeling, and synovial inflammation were assessed at the final endpoint of 28 weeks. Statistical analyses included one-way and two-way ANOVA with Tukey’s multiple comparison test. Piezo1 cKO delayed pain onset but ultimately exacerbated cartilage degradation and synovitis, emphasizing its dual role in protective and pathogenic mechanotransduction. While the Piezo2 cKO reduced pain and preserved activity, it failed to protect cartilage. Notably, Piezo1/2 cKO provided the greatest protection against cartilage degeneration, synovitis, and pain. Micro-computed tomography analyses revealed that Piezo2 is critical for maintaining trabecular bone integrity, with a Piezo2 cKO leading to decreased bone volume, thickness, and density, independent of injury. Piezo2 cKO also reduced normal meniscal ossification that occurs with age in mice. In contrast, a Piezo1/2 cKO normalized most bone remodeling parameters observed in Piezo2 cKO mice but did not restore medial tibial plateau thickness, highlighting Piezo2’s essential role in bone structure. These findings demonstrate the overlapping and compensatory roles of Piezo1 and Piezo2 in OA pathogenesis. Dual inhibition of Piezo1 and Piezo2 may offer a novel, effective therapeutic strategy targeting both structural and symptomatic aspects of the disease.
期刊介绍:
Established in 1999, Arthritis Research and Therapy is an international, open access, peer-reviewed journal, publishing original articles in the area of musculoskeletal research and therapy as well as, reviews, commentaries and reports. A major focus of the journal is on the immunologic processes leading to inflammation, damage and repair as they relate to autoimmune rheumatic and musculoskeletal conditions, and which inform the translation of this knowledge into advances in clinical care. Original basic, translational and clinical research is considered for publication along with results of early and late phase therapeutic trials, especially as they pertain to the underpinning science that informs clinical observations in interventional studies.