Si-Mian Liu, Shi-Hao Zhang, Hiroaki Abe, Shigenobu Ogata, Wei-Zhong Han
{"title":"辐照锆异常退火硬化的基位错环","authors":"Si-Mian Liu, Shi-Hao Zhang, Hiroaki Abe, Shigenobu Ogata, Wei-Zhong Han","doi":"10.1016/j.actamat.2025.121366","DOIUrl":null,"url":null,"abstract":"Annealing is a traditional pathway to mitigate irradiation hardening in metals, while an anomalous annealing hardening is widely observed in neutron-irradiated zirconium (Zr), which is counterintuitive and intriguing, and affects the performance of Zr components in nuclear reactors. Here, we report that the anomalous annealing hardening in irradiated Zr originates from thermally activated formation of three-dimensional kinked <c> dislocation loops. Through concurrent in-situ heating experiments inside a transmission electron microscope, we demonstrate that irradiation-induced planar <c> dislocation loops progressively merge into zigzag-shape kinked configurations between 400°C -500°C. Atomistic simulations reveal that partial dislocations generated by the dissociation of 1/6<2<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover accent=\"true\" is=\"true\"><mn is=\"true\">2</mn><mo is=\"true\">&#xAF;</mo></mover></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.202ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -846.5 570.5 947.9\" width=\"1.325ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\" transform=\"translate(35,0)\"><use xlink:href=\"#MJMAIN-32\"></use></g><g is=\"true\" transform=\"translate(0,198)\"><use x=\"-70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use><use x=\"70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover accent=\"true\" is=\"true\"><mn is=\"true\">2</mn><mo is=\"true\">¯</mo></mover></math></span></span><script type=\"math/mml\"><math><mover accent=\"true\" is=\"true\"><mn is=\"true\">2</mn><mo is=\"true\">¯</mo></mover></math></script></span>03> loops glide on pyramidal planes driven by the inter-loop attraction forces, ultimately forming kinked steps. These three-dimensional kinked <c> loops act as strong obstacles for prismatic <a> dislocations, leading to a pronounced hardening. This discovery provides a universal framework for understanding the annealing-induced hardening in hexagonal close-packed metals.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"659 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinked basal dislocation loops for anomalous annealing hardening in irradiated zirconium\",\"authors\":\"Si-Mian Liu, Shi-Hao Zhang, Hiroaki Abe, Shigenobu Ogata, Wei-Zhong Han\",\"doi\":\"10.1016/j.actamat.2025.121366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Annealing is a traditional pathway to mitigate irradiation hardening in metals, while an anomalous annealing hardening is widely observed in neutron-irradiated zirconium (Zr), which is counterintuitive and intriguing, and affects the performance of Zr components in nuclear reactors. Here, we report that the anomalous annealing hardening in irradiated Zr originates from thermally activated formation of three-dimensional kinked <c> dislocation loops. Through concurrent in-situ heating experiments inside a transmission electron microscope, we demonstrate that irradiation-induced planar <c> dislocation loops progressively merge into zigzag-shape kinked configurations between 400°C -500°C. Atomistic simulations reveal that partial dislocations generated by the dissociation of 1/6<2<span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mover accent=\\\"true\\\" is=\\\"true\\\"><mn is=\\\"true\\\">2</mn><mo is=\\\"true\\\">&#xAF;</mo></mover></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.202ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex;\\\" viewbox=\\\"0 -846.5 570.5 947.9\\\" width=\\\"1.325ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\" transform=\\\"translate(35,0)\\\"><use xlink:href=\\\"#MJMAIN-32\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(0,198)\\\"><use x=\\\"-70\\\" xlink:href=\\\"#MJMAIN-AF\\\" y=\\\"0\\\"></use><use x=\\\"70\\\" xlink:href=\\\"#MJMAIN-AF\\\" y=\\\"0\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mover accent=\\\"true\\\" is=\\\"true\\\"><mn is=\\\"true\\\">2</mn><mo is=\\\"true\\\">¯</mo></mover></math></span></span><script type=\\\"math/mml\\\"><math><mover accent=\\\"true\\\" is=\\\"true\\\"><mn is=\\\"true\\\">2</mn><mo is=\\\"true\\\">¯</mo></mover></math></script></span>03> loops glide on pyramidal planes driven by the inter-loop attraction forces, ultimately forming kinked steps. These three-dimensional kinked <c> loops act as strong obstacles for prismatic <a> dislocations, leading to a pronounced hardening. This discovery provides a universal framework for understanding the annealing-induced hardening in hexagonal close-packed metals.\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"659 1\",\"pages\":\"\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actamat.2025.121366\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2025.121366","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Kinked basal dislocation loops for anomalous annealing hardening in irradiated zirconium
Annealing is a traditional pathway to mitigate irradiation hardening in metals, while an anomalous annealing hardening is widely observed in neutron-irradiated zirconium (Zr), which is counterintuitive and intriguing, and affects the performance of Zr components in nuclear reactors. Here, we report that the anomalous annealing hardening in irradiated Zr originates from thermally activated formation of three-dimensional kinked <c> dislocation loops. Through concurrent in-situ heating experiments inside a transmission electron microscope, we demonstrate that irradiation-induced planar <c> dislocation loops progressively merge into zigzag-shape kinked configurations between 400°C -500°C. Atomistic simulations reveal that partial dislocations generated by the dissociation of 1/6<203> loops glide on pyramidal planes driven by the inter-loop attraction forces, ultimately forming kinked steps. These three-dimensional kinked <c> loops act as strong obstacles for prismatic <a> dislocations, leading to a pronounced hardening. This discovery provides a universal framework for understanding the annealing-induced hardening in hexagonal close-packed metals.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.