{"title":"CircABCA1通过重编程胆固醇代谢和igf2bp3介导的SCARB1 mRNA稳定促进M2巨噬细胞极化,从而促进ccRCC。","authors":"Hao Ning,Yan Jiang,Binbin Li,Junwu Ren,Cong Wang,Ling Wei,Linfei Li,Ai Ran,Zuozhang Li,Jiao Li,Wei Li,Yongquan Wang,Bin Xiao","doi":"10.1186/s12943-025-02398-4","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nThe reliance of clear cell renal cell carcinoma (ccRCC) on exogenous cholesterol import implies a metabolic susceptibility. This susceptibility represents a potential avenue that can be exploited as a novel therapeutic approach for ccRCC. Circular RNAs (circRNAs) are emerging regulators in cancer, yet their roles in ccRCC lipid metabolism and tumor microenvironment remodeling remain unclear. This study investigates the tumor-promoting role of circABCA1 in ccRCC cholesterol homeostasis and M2 macrophage polarization.\r\n\r\nMETHODS\r\nThe expression levels of circABCA1, IGF2BP3, SCARB1, autophagy-related proteins, and the IGF1R/PI3K/AKT/mTOR and ABCA1/ABCG1 pathways were measured using RT-qPCR and western blot. Untargeted metabolomics, RNA- sequencing, and MS2 RNA-pulldown were conducted to identify targets. Interaction analyses included RNA immunoprecipitation, RNA pull-down, and RNA fluorescence in situ hybridization (FISH) assays. Lipid raft measurements, cholesterol uptake/efflux assays, and lipophagy assessments were performed. A co-culture system between M2 macrophages and ccRCC cells was established. In vivo tumorigenesis and metastasis were evaluated using xenograft models and a hepatic metastasis model. Statistical analyses involved Student's t-tests and ANOVA; significance set at P < 0.05.\r\n\r\nRESULTS\r\nWe identified a novel lipid metabolism-related circRNA, circABCA1, which was upregulated in ccRCC and positively correlated with tumor stage and distant metastasis. Functionally, circABCA1 enhanced the half-life of SCARB1 mRNA by forming a circABCA1-IGF2BP3-SCARB1 mRNA ternary complex, thereby increasing the expression of SCARB1 and consequent cholesterol uptake. Next, elevated cholesterol caused by circABCA1-SCARB1 axis-maintained lipid rafts, initiated IGF1R/PI3K/AKT/mTOR cascade, and protected lipid droplets from being destructed by lipophagy, leading to decreased cholesterol efflux. CircABCA1 facilitated the proliferation and migration of ccRCC in vitro and in vivo in a SCARB1 depended manner. Moreover, we uncovered that circABCA1 facilitated M2 macrophage polarization and subsequent pro-tumor effect by prompting cholesterol uptake of ccRCC from tumor microenvironment in a SCARB1-dependent manner.\r\n\r\nCONCLUSIONS\r\nCircABCA1 plays a crucial role in promoting ccRCC progression by regulating cholesterol metabolism and facilitating M2 macrophage polarization, representing a potential therapeutic target for ccRCC treatment.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"10 1","pages":"199"},"PeriodicalIF":27.7000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CircABCA1 promotes ccRCC by reprogramming cholesterol metabolism and facilitating M2 macrophage polarization through IGF2BP3-mediated stabilization of SCARB1 mRNA.\",\"authors\":\"Hao Ning,Yan Jiang,Binbin Li,Junwu Ren,Cong Wang,Ling Wei,Linfei Li,Ai Ran,Zuozhang Li,Jiao Li,Wei Li,Yongquan Wang,Bin Xiao\",\"doi\":\"10.1186/s12943-025-02398-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND\\r\\nThe reliance of clear cell renal cell carcinoma (ccRCC) on exogenous cholesterol import implies a metabolic susceptibility. This susceptibility represents a potential avenue that can be exploited as a novel therapeutic approach for ccRCC. Circular RNAs (circRNAs) are emerging regulators in cancer, yet their roles in ccRCC lipid metabolism and tumor microenvironment remodeling remain unclear. This study investigates the tumor-promoting role of circABCA1 in ccRCC cholesterol homeostasis and M2 macrophage polarization.\\r\\n\\r\\nMETHODS\\r\\nThe expression levels of circABCA1, IGF2BP3, SCARB1, autophagy-related proteins, and the IGF1R/PI3K/AKT/mTOR and ABCA1/ABCG1 pathways were measured using RT-qPCR and western blot. Untargeted metabolomics, RNA- sequencing, and MS2 RNA-pulldown were conducted to identify targets. Interaction analyses included RNA immunoprecipitation, RNA pull-down, and RNA fluorescence in situ hybridization (FISH) assays. Lipid raft measurements, cholesterol uptake/efflux assays, and lipophagy assessments were performed. A co-culture system between M2 macrophages and ccRCC cells was established. In vivo tumorigenesis and metastasis were evaluated using xenograft models and a hepatic metastasis model. Statistical analyses involved Student's t-tests and ANOVA; significance set at P < 0.05.\\r\\n\\r\\nRESULTS\\r\\nWe identified a novel lipid metabolism-related circRNA, circABCA1, which was upregulated in ccRCC and positively correlated with tumor stage and distant metastasis. Functionally, circABCA1 enhanced the half-life of SCARB1 mRNA by forming a circABCA1-IGF2BP3-SCARB1 mRNA ternary complex, thereby increasing the expression of SCARB1 and consequent cholesterol uptake. Next, elevated cholesterol caused by circABCA1-SCARB1 axis-maintained lipid rafts, initiated IGF1R/PI3K/AKT/mTOR cascade, and protected lipid droplets from being destructed by lipophagy, leading to decreased cholesterol efflux. CircABCA1 facilitated the proliferation and migration of ccRCC in vitro and in vivo in a SCARB1 depended manner. Moreover, we uncovered that circABCA1 facilitated M2 macrophage polarization and subsequent pro-tumor effect by prompting cholesterol uptake of ccRCC from tumor microenvironment in a SCARB1-dependent manner.\\r\\n\\r\\nCONCLUSIONS\\r\\nCircABCA1 plays a crucial role in promoting ccRCC progression by regulating cholesterol metabolism and facilitating M2 macrophage polarization, representing a potential therapeutic target for ccRCC treatment.\",\"PeriodicalId\":19000,\"journal\":{\"name\":\"Molecular Cancer\",\"volume\":\"10 1\",\"pages\":\"199\"},\"PeriodicalIF\":27.7000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12943-025-02398-4\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02398-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
CircABCA1 promotes ccRCC by reprogramming cholesterol metabolism and facilitating M2 macrophage polarization through IGF2BP3-mediated stabilization of SCARB1 mRNA.
BACKGROUND
The reliance of clear cell renal cell carcinoma (ccRCC) on exogenous cholesterol import implies a metabolic susceptibility. This susceptibility represents a potential avenue that can be exploited as a novel therapeutic approach for ccRCC. Circular RNAs (circRNAs) are emerging regulators in cancer, yet their roles in ccRCC lipid metabolism and tumor microenvironment remodeling remain unclear. This study investigates the tumor-promoting role of circABCA1 in ccRCC cholesterol homeostasis and M2 macrophage polarization.
METHODS
The expression levels of circABCA1, IGF2BP3, SCARB1, autophagy-related proteins, and the IGF1R/PI3K/AKT/mTOR and ABCA1/ABCG1 pathways were measured using RT-qPCR and western blot. Untargeted metabolomics, RNA- sequencing, and MS2 RNA-pulldown were conducted to identify targets. Interaction analyses included RNA immunoprecipitation, RNA pull-down, and RNA fluorescence in situ hybridization (FISH) assays. Lipid raft measurements, cholesterol uptake/efflux assays, and lipophagy assessments were performed. A co-culture system between M2 macrophages and ccRCC cells was established. In vivo tumorigenesis and metastasis were evaluated using xenograft models and a hepatic metastasis model. Statistical analyses involved Student's t-tests and ANOVA; significance set at P < 0.05.
RESULTS
We identified a novel lipid metabolism-related circRNA, circABCA1, which was upregulated in ccRCC and positively correlated with tumor stage and distant metastasis. Functionally, circABCA1 enhanced the half-life of SCARB1 mRNA by forming a circABCA1-IGF2BP3-SCARB1 mRNA ternary complex, thereby increasing the expression of SCARB1 and consequent cholesterol uptake. Next, elevated cholesterol caused by circABCA1-SCARB1 axis-maintained lipid rafts, initiated IGF1R/PI3K/AKT/mTOR cascade, and protected lipid droplets from being destructed by lipophagy, leading to decreased cholesterol efflux. CircABCA1 facilitated the proliferation and migration of ccRCC in vitro and in vivo in a SCARB1 depended manner. Moreover, we uncovered that circABCA1 facilitated M2 macrophage polarization and subsequent pro-tumor effect by prompting cholesterol uptake of ccRCC from tumor microenvironment in a SCARB1-dependent manner.
CONCLUSIONS
CircABCA1 plays a crucial role in promoting ccRCC progression by regulating cholesterol metabolism and facilitating M2 macrophage polarization, representing a potential therapeutic target for ccRCC treatment.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.