广义生长曲线模型中一般三线性假设的检验

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Justine Dushimirimana , Isaac Kipchirchir Chumba , Lydia Musiga , Joseph Nzabanita , Ronald Waliaula Wanyonyi
{"title":"广义生长曲线模型中一般三线性假设的检验","authors":"Justine Dushimirimana ,&nbsp;Isaac Kipchirchir Chumba ,&nbsp;Lydia Musiga ,&nbsp;Joseph Nzabanita ,&nbsp;Ronald Waliaula Wanyonyi","doi":"10.1016/j.jmva.2025.105470","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the problem of testing a general trilinear hypothesis in the generalized growth curve model. The general trilinear hypothesis was formulated to test for example the significance of the generalized growth curves or the equality of the trilinear mean between groups in the two dimensions. The null hypothesis considered is of the form <span><math><mrow><mi>ℬ</mi><mspace></mspace><mo>×</mo><mrow><mo>{</mo><mi>L</mi><mo>,</mo><mi>M</mi><mo>,</mo><mi>N</mi><mo>}</mo></mrow><mo>=</mo><mi>O</mi></mrow></math></span>, where <span><math><mrow><mi>L</mi><mo>,</mo><mi>M</mi></mrow></math></span> and <span><math><mi>N</mi></math></span> are known matrices, <span><math><mi>ℬ</mi></math></span> is unknown parameter tensor and <span><math><mi>O</mi></math></span> is a tensor of zeros. The estimators of the parameters were obtained using a flip-flop algorithm under the null and alternative hypotheses. The likelihood ratio test for testing the general trilinear hypothesis was discussed. The proposed test is an extension of the likelihood ratio test for the general linear hypothesis under the growth curve model. A simulation study was performed to evaluate the performance of the proposed test and a real dataset was used for an illustrative example.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"210 ","pages":"Article 105470"},"PeriodicalIF":1.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Test for a general trilinear hypothesis in the generalized growth curve model\",\"authors\":\"Justine Dushimirimana ,&nbsp;Isaac Kipchirchir Chumba ,&nbsp;Lydia Musiga ,&nbsp;Joseph Nzabanita ,&nbsp;Ronald Waliaula Wanyonyi\",\"doi\":\"10.1016/j.jmva.2025.105470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider the problem of testing a general trilinear hypothesis in the generalized growth curve model. The general trilinear hypothesis was formulated to test for example the significance of the generalized growth curves or the equality of the trilinear mean between groups in the two dimensions. The null hypothesis considered is of the form <span><math><mrow><mi>ℬ</mi><mspace></mspace><mo>×</mo><mrow><mo>{</mo><mi>L</mi><mo>,</mo><mi>M</mi><mo>,</mo><mi>N</mi><mo>}</mo></mrow><mo>=</mo><mi>O</mi></mrow></math></span>, where <span><math><mrow><mi>L</mi><mo>,</mo><mi>M</mi></mrow></math></span> and <span><math><mi>N</mi></math></span> are known matrices, <span><math><mi>ℬ</mi></math></span> is unknown parameter tensor and <span><math><mi>O</mi></math></span> is a tensor of zeros. The estimators of the parameters were obtained using a flip-flop algorithm under the null and alternative hypotheses. The likelihood ratio test for testing the general trilinear hypothesis was discussed. The proposed test is an extension of the likelihood ratio test for the general linear hypothesis under the growth curve model. A simulation study was performed to evaluate the performance of the proposed test and a real dataset was used for an illustrative example.</div></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"210 \",\"pages\":\"Article 105470\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X2500065X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X2500065X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究广义增长曲线模型中一般三线性假设的检验问题。一般三线假设是用来检验例如广义增长曲线的显著性或在两个维度上组间三线平均值的相等性。所考虑的原假设的形式为:∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑。在零假设和备假设下,使用触发器算法得到了参数的估计量。讨论了检验一般三线性假设的似然比检验。本文提出的检验是对生长曲线模型下一般线性假设的似然比检验的推广。进行了模拟研究以评估所提出的测试的性能,并使用真实数据集作为说明性示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Test for a general trilinear hypothesis in the generalized growth curve model
In this paper, we consider the problem of testing a general trilinear hypothesis in the generalized growth curve model. The general trilinear hypothesis was formulated to test for example the significance of the generalized growth curves or the equality of the trilinear mean between groups in the two dimensions. The null hypothesis considered is of the form ×{L,M,N}=O, where L,M and N are known matrices, is unknown parameter tensor and O is a tensor of zeros. The estimators of the parameters were obtained using a flip-flop algorithm under the null and alternative hypotheses. The likelihood ratio test for testing the general trilinear hypothesis was discussed. The proposed test is an extension of the likelihood ratio test for the general linear hypothesis under the growth curve model. A simulation study was performed to evaluate the performance of the proposed test and a real dataset was used for an illustrative example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信