{"title":"ViFT:通过深度强化学习的视觉领域测试的视觉领域转换器","authors":"Shozo Saeki, Minoru Kawahara, Hirohisa Aman","doi":"10.1016/j.media.2025.103721","DOIUrl":null,"url":null,"abstract":"<div><div>Visual field testing (perimetry) quantifies a patient’s visual field sensitivity to diagnosis and follow-up on their visual impairments. Visual field testing would require the patients to concentrate on the test for a long time. However, a longer testing time makes patients more exhausted and leads to a decrease in testing accuracy. Thus, it is helpful to develop a well-designed strategy to finish the testing more quickly while maintaining high accuracy. This paper proposes the visual field transformer (ViFT) for visual field testing with deep reinforcement learning. This study contributes to the following four: (1) ViFT can fully control the visual field testing process. (2) ViFT learns the relationships of visual field locations without any pre-defined information. (3) ViFT learning process can consider the patient perception uncertainty. (4) ViFT achieves the same or higher accuracy than the other strategies, and half as test time as the other strategies. Our experiments demonstrate the ViFT efficiency on the 24-2 test pattern compared with other strategies.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"105 ","pages":"Article 103721"},"PeriodicalIF":10.7000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ViFT: Visual field transformer for visual field testing via deep reinforcement learning\",\"authors\":\"Shozo Saeki, Minoru Kawahara, Hirohisa Aman\",\"doi\":\"10.1016/j.media.2025.103721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Visual field testing (perimetry) quantifies a patient’s visual field sensitivity to diagnosis and follow-up on their visual impairments. Visual field testing would require the patients to concentrate on the test for a long time. However, a longer testing time makes patients more exhausted and leads to a decrease in testing accuracy. Thus, it is helpful to develop a well-designed strategy to finish the testing more quickly while maintaining high accuracy. This paper proposes the visual field transformer (ViFT) for visual field testing with deep reinforcement learning. This study contributes to the following four: (1) ViFT can fully control the visual field testing process. (2) ViFT learns the relationships of visual field locations without any pre-defined information. (3) ViFT learning process can consider the patient perception uncertainty. (4) ViFT achieves the same or higher accuracy than the other strategies, and half as test time as the other strategies. Our experiments demonstrate the ViFT efficiency on the 24-2 test pattern compared with other strategies.</div></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"105 \",\"pages\":\"Article 103721\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841525002683\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525002683","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
ViFT: Visual field transformer for visual field testing via deep reinforcement learning
Visual field testing (perimetry) quantifies a patient’s visual field sensitivity to diagnosis and follow-up on their visual impairments. Visual field testing would require the patients to concentrate on the test for a long time. However, a longer testing time makes patients more exhausted and leads to a decrease in testing accuracy. Thus, it is helpful to develop a well-designed strategy to finish the testing more quickly while maintaining high accuracy. This paper proposes the visual field transformer (ViFT) for visual field testing with deep reinforcement learning. This study contributes to the following four: (1) ViFT can fully control the visual field testing process. (2) ViFT learns the relationships of visual field locations without any pre-defined information. (3) ViFT learning process can consider the patient perception uncertainty. (4) ViFT achieves the same or higher accuracy than the other strategies, and half as test time as the other strategies. Our experiments demonstrate the ViFT efficiency on the 24-2 test pattern compared with other strategies.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.