ViFT:通过深度强化学习的视觉领域测试的视觉领域转换器

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shozo Saeki, Minoru Kawahara, Hirohisa Aman
{"title":"ViFT:通过深度强化学习的视觉领域测试的视觉领域转换器","authors":"Shozo Saeki,&nbsp;Minoru Kawahara,&nbsp;Hirohisa Aman","doi":"10.1016/j.media.2025.103721","DOIUrl":null,"url":null,"abstract":"<div><div>Visual field testing (perimetry) quantifies a patient’s visual field sensitivity to diagnosis and follow-up on their visual impairments. Visual field testing would require the patients to concentrate on the test for a long time. However, a longer testing time makes patients more exhausted and leads to a decrease in testing accuracy. Thus, it is helpful to develop a well-designed strategy to finish the testing more quickly while maintaining high accuracy. This paper proposes the visual field transformer (ViFT) for visual field testing with deep reinforcement learning. This study contributes to the following four: (1) ViFT can fully control the visual field testing process. (2) ViFT learns the relationships of visual field locations without any pre-defined information. (3) ViFT learning process can consider the patient perception uncertainty. (4) ViFT achieves the same or higher accuracy than the other strategies, and half as test time as the other strategies. Our experiments demonstrate the ViFT efficiency on the 24-2 test pattern compared with other strategies.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"105 ","pages":"Article 103721"},"PeriodicalIF":10.7000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ViFT: Visual field transformer for visual field testing via deep reinforcement learning\",\"authors\":\"Shozo Saeki,&nbsp;Minoru Kawahara,&nbsp;Hirohisa Aman\",\"doi\":\"10.1016/j.media.2025.103721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Visual field testing (perimetry) quantifies a patient’s visual field sensitivity to diagnosis and follow-up on their visual impairments. Visual field testing would require the patients to concentrate on the test for a long time. However, a longer testing time makes patients more exhausted and leads to a decrease in testing accuracy. Thus, it is helpful to develop a well-designed strategy to finish the testing more quickly while maintaining high accuracy. This paper proposes the visual field transformer (ViFT) for visual field testing with deep reinforcement learning. This study contributes to the following four: (1) ViFT can fully control the visual field testing process. (2) ViFT learns the relationships of visual field locations without any pre-defined information. (3) ViFT learning process can consider the patient perception uncertainty. (4) ViFT achieves the same or higher accuracy than the other strategies, and half as test time as the other strategies. Our experiments demonstrate the ViFT efficiency on the 24-2 test pattern compared with other strategies.</div></div>\",\"PeriodicalId\":18328,\"journal\":{\"name\":\"Medical image analysis\",\"volume\":\"105 \",\"pages\":\"Article 103721\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1361841525002683\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525002683","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

视野测试(视距测量)量化患者的视野敏感性,以诊断和随访他们的视力障碍。视野测试需要患者长时间专注于测试。然而,较长的检测时间使患者更加疲惫,导致检测准确性下降。因此,开发一个设计良好的策略有助于在保持高准确性的同时更快地完成测试。本文提出了一种基于深度强化学习的视野测试视觉变压器(ViFT)。本研究有以下四点贡献:(1)ViFT可以完全控制视野测试过程。(2)在没有任何预定义信息的情况下,ViFT学习视野位置之间的关系。(3) ViFT学习过程可以考虑患者感知的不确定性。(4) ViFT的准确率与其他策略相同或更高,测试时间是其他策略的一半。实验结果表明,与其他策略相比,ViFT在24-2测试模式上的效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ViFT: Visual field transformer for visual field testing via deep reinforcement learning
Visual field testing (perimetry) quantifies a patient’s visual field sensitivity to diagnosis and follow-up on their visual impairments. Visual field testing would require the patients to concentrate on the test for a long time. However, a longer testing time makes patients more exhausted and leads to a decrease in testing accuracy. Thus, it is helpful to develop a well-designed strategy to finish the testing more quickly while maintaining high accuracy. This paper proposes the visual field transformer (ViFT) for visual field testing with deep reinforcement learning. This study contributes to the following four: (1) ViFT can fully control the visual field testing process. (2) ViFT learns the relationships of visual field locations without any pre-defined information. (3) ViFT learning process can consider the patient perception uncertainty. (4) ViFT achieves the same or higher accuracy than the other strategies, and half as test time as the other strategies. Our experiments demonstrate the ViFT efficiency on the 24-2 test pattern compared with other strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信