同步加速器质子治疗设施中用于辐射防护的个人和环境中子探测器的相互比较:实验和蒙特卡罗结果

IF 2.7 3区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Evangelina Martínez-Francés , Verónica Morán , Ana M. Romero , J. Pablo Cabello-García , Alberto Viñals , Javier Burguete , Sergio Rivera , Rafael Rodríguez , Roberto Méndez , Carles Domingo , Josep M. Martí-Climent
{"title":"同步加速器质子治疗设施中用于辐射防护的个人和环境中子探测器的相互比较:实验和蒙特卡罗结果","authors":"Evangelina Martínez-Francés ,&nbsp;Verónica Morán ,&nbsp;Ana M. Romero ,&nbsp;J. Pablo Cabello-García ,&nbsp;Alberto Viñals ,&nbsp;Javier Burguete ,&nbsp;Sergio Rivera ,&nbsp;Rafael Rodríguez ,&nbsp;Roberto Méndez ,&nbsp;Carles Domingo ,&nbsp;Josep M. Martí-Climent","doi":"10.1016/j.ejmp.2025.105044","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>This study evaluates ambient and personal neutron detectors in a synchrotron-based proton therapy facility, using experimental data and Monte Carlo (TOPAS) simulations. It aims to assess the interchangeability of detectors, characterize neutron doses in the treatment room, and provide radiological protection recommendations. <em>Method</em>: A 10 × 10 × 10 cm<sup>3</sup> volume (energy range: 121–173 MeV) was irradiated on a 30 × 30 × 60 cm<sup>3</sup> solid water phantom. Ambient dose equivalent (<em>H*</em>(10)) was measured using two extended-energy-range detectors (LUPIN-II, WENDI-II) at 20 positions. Personal dose equivalent (<em>H<sub>p</sub></em>(10)) was evaluated using five dosimeters (bubble detectors, DOPEN tracks, NeutrakT, MCP6/MCP7 TLDs, NRF51 EPD) at 14–20 positions. Bland-Altman analysis quantified agreement. TOPAS, a Monte Carlo code, was employed to calculate neutron spectra and to compare the results with experimental <em>H*</em>(10) values for its validation. <em>Results</em>: The WENDI-II and LUPIN-II detectors showed good agreement, with WENDI-II readings 14 % higher on average. Among personal dosimeters, DOPEN tracks exhibited the closest agreement with bubble detectors, with a bias of −33 %. In constrast, NeutrakT underperformed due to its high detection limit. TOPAS simulations aligned with experimental <em>H*</em>(10) trends, with differences ranging from 0 to 32 %, except for positions involving significant PMMA attenuation. Neutron spectra revealed angular and distance-dependent variations, with thermal neutrons dominating at larger distances. <em>Conclusions</em>: Both WENDI-II and LUPIN-II are suitable for environmental neutron monitoring in synchrotron-based facilities. DOPEN tracks emerged as the most reliable passive personal dosimeter for <em>H<sub>p</sub></em>(10). Monte Carlo simulations enhanced understanding of neutron field behavior and were validated, in terms of <em>H*</em>(10), by the experimental results. Recommendations for radiological protection include replicating accidental exposures with WENDI-II and LUPIN-II to estimate doses accurately.</div></div>","PeriodicalId":56092,"journal":{"name":"Physica Medica-European Journal of Medical Physics","volume":"136 ","pages":"Article 105044"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intercomparison of personal and ambient neutron detectors used for radiation protection in a synchrotron-based proton therapy facility: experimental and Monte Carlo results\",\"authors\":\"Evangelina Martínez-Francés ,&nbsp;Verónica Morán ,&nbsp;Ana M. Romero ,&nbsp;J. Pablo Cabello-García ,&nbsp;Alberto Viñals ,&nbsp;Javier Burguete ,&nbsp;Sergio Rivera ,&nbsp;Rafael Rodríguez ,&nbsp;Roberto Méndez ,&nbsp;Carles Domingo ,&nbsp;Josep M. Martí-Climent\",\"doi\":\"10.1016/j.ejmp.2025.105044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>This study evaluates ambient and personal neutron detectors in a synchrotron-based proton therapy facility, using experimental data and Monte Carlo (TOPAS) simulations. It aims to assess the interchangeability of detectors, characterize neutron doses in the treatment room, and provide radiological protection recommendations. <em>Method</em>: A 10 × 10 × 10 cm<sup>3</sup> volume (energy range: 121–173 MeV) was irradiated on a 30 × 30 × 60 cm<sup>3</sup> solid water phantom. Ambient dose equivalent (<em>H*</em>(10)) was measured using two extended-energy-range detectors (LUPIN-II, WENDI-II) at 20 positions. Personal dose equivalent (<em>H<sub>p</sub></em>(10)) was evaluated using five dosimeters (bubble detectors, DOPEN tracks, NeutrakT, MCP6/MCP7 TLDs, NRF51 EPD) at 14–20 positions. Bland-Altman analysis quantified agreement. TOPAS, a Monte Carlo code, was employed to calculate neutron spectra and to compare the results with experimental <em>H*</em>(10) values for its validation. <em>Results</em>: The WENDI-II and LUPIN-II detectors showed good agreement, with WENDI-II readings 14 % higher on average. Among personal dosimeters, DOPEN tracks exhibited the closest agreement with bubble detectors, with a bias of −33 %. In constrast, NeutrakT underperformed due to its high detection limit. TOPAS simulations aligned with experimental <em>H*</em>(10) trends, with differences ranging from 0 to 32 %, except for positions involving significant PMMA attenuation. Neutron spectra revealed angular and distance-dependent variations, with thermal neutrons dominating at larger distances. <em>Conclusions</em>: Both WENDI-II and LUPIN-II are suitable for environmental neutron monitoring in synchrotron-based facilities. DOPEN tracks emerged as the most reliable passive personal dosimeter for <em>H<sub>p</sub></em>(10). Monte Carlo simulations enhanced understanding of neutron field behavior and were validated, in terms of <em>H*</em>(10), by the experimental results. Recommendations for radiological protection include replicating accidental exposures with WENDI-II and LUPIN-II to estimate doses accurately.</div></div>\",\"PeriodicalId\":56092,\"journal\":{\"name\":\"Physica Medica-European Journal of Medical Physics\",\"volume\":\"136 \",\"pages\":\"Article 105044\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Medica-European Journal of Medical Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1120179725001541\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Medica-European Journal of Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1120179725001541","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的利用实验数据和蒙特卡罗(TOPAS)模拟,对同步加速器质子治疗设施中的环境和个人中子探测器进行了评估。它旨在评估探测器的互换性,表征治疗室中的中子剂量,并提供放射防护建议。方法:将一个10 × 10 × 10 cm3体积(能量范围:121 ~ 173 MeV)照射在一个30 × 30 × 60 cm3的固体水模上。使用两个扩展能量范围探测器(LUPIN-II, WENDI-II)在20个位置测量环境剂量当量(H*(10))。使用5个剂量计(气泡探测器、DOPEN磁道、NeutrakT、MCP6/MCP7 tld、NRF51 EPD)在14-20个位置评估个人剂量当量(Hp(10))。Bland-Altman分析量化了一致性。利用蒙特卡罗程序TOPAS计算中子能谱,并将计算结果与实验H*(10)值进行比较验证。结果:WENDI-II和LUPIN-II检测仪显示出良好的一致性,WENDI-II的读数平均高出14%。在个人剂量计中,DOPEN轨迹与气泡探测器表现出最接近的一致性,偏差为- 33%。相比之下,NeutrakT由于检测限高而表现不佳。除了PMMA衰减显著的位置外,TOPAS模拟与实验H*(10)趋势一致,差异从0到32%不等。中子谱显示出角度和距离相关的变化,热中子在较大的距离上占主导地位。结论:WENDI-II和LUPIN-II都适用于同步加速器设施的环境中子监测。DOPEN磁轨成为最可靠的Hp被动个人剂量计。蒙特卡罗模拟增强了对中子场行为的理解,并通过实验结果在H*(10)方面得到了验证。放射防护建议包括用WENDI-II和LUPIN-II重复意外照射,以准确估计剂量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intercomparison of personal and ambient neutron detectors used for radiation protection in a synchrotron-based proton therapy facility: experimental and Monte Carlo results

Purpose

This study evaluates ambient and personal neutron detectors in a synchrotron-based proton therapy facility, using experimental data and Monte Carlo (TOPAS) simulations. It aims to assess the interchangeability of detectors, characterize neutron doses in the treatment room, and provide radiological protection recommendations. Method: A 10 × 10 × 10 cm3 volume (energy range: 121–173 MeV) was irradiated on a 30 × 30 × 60 cm3 solid water phantom. Ambient dose equivalent (H*(10)) was measured using two extended-energy-range detectors (LUPIN-II, WENDI-II) at 20 positions. Personal dose equivalent (Hp(10)) was evaluated using five dosimeters (bubble detectors, DOPEN tracks, NeutrakT, MCP6/MCP7 TLDs, NRF51 EPD) at 14–20 positions. Bland-Altman analysis quantified agreement. TOPAS, a Monte Carlo code, was employed to calculate neutron spectra and to compare the results with experimental H*(10) values for its validation. Results: The WENDI-II and LUPIN-II detectors showed good agreement, with WENDI-II readings 14 % higher on average. Among personal dosimeters, DOPEN tracks exhibited the closest agreement with bubble detectors, with a bias of −33 %. In constrast, NeutrakT underperformed due to its high detection limit. TOPAS simulations aligned with experimental H*(10) trends, with differences ranging from 0 to 32 %, except for positions involving significant PMMA attenuation. Neutron spectra revealed angular and distance-dependent variations, with thermal neutrons dominating at larger distances. Conclusions: Both WENDI-II and LUPIN-II are suitable for environmental neutron monitoring in synchrotron-based facilities. DOPEN tracks emerged as the most reliable passive personal dosimeter for Hp(10). Monte Carlo simulations enhanced understanding of neutron field behavior and were validated, in terms of H*(10), by the experimental results. Recommendations for radiological protection include replicating accidental exposures with WENDI-II and LUPIN-II to estimate doses accurately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
14.70%
发文量
493
审稿时长
78 days
期刊介绍: Physica Medica, European Journal of Medical Physics, publishing with Elsevier from 2007, provides an international forum for research and reviews on the following main topics: Medical Imaging Radiation Therapy Radiation Protection Measuring Systems and Signal Processing Education and training in Medical Physics Professional issues in Medical Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信