评估和指导外科医生非技术技能的大型语言模型的可行性。

Npj health systems Pub Date : 2025-01-01 Epub Date: 2025-07-15 DOI:10.1038/s44401-025-00027-2
Marian Obuseh, Sneha Singh, Nicholas E Anton, Robin Gardiner, Dimitrios Stefanidis, Denny Yu
{"title":"评估和指导外科医生非技术技能的大型语言模型的可行性。","authors":"Marian Obuseh, Sneha Singh, Nicholas E Anton, Robin Gardiner, Dimitrios Stefanidis, Denny Yu","doi":"10.1038/s44401-025-00027-2","DOIUrl":null,"url":null,"abstract":"<p><p>This study demonstrates Large Language models (LLMs) to assess and coach surgeons on their non-technical skills, traditionally evaluated through subjective and resource-intensive methods. Llama 3.1 and Mistral effectively analyzed robotic-assisted surgery transcripts, identified exemplar and non-exemplar behaviors, and autonomously generated structured coaching feedback to guide surgeons' improvement. Our findings highlight the potential of LLMs as scalable, data-driven tools for enhancing surgical education and supporting consistent coaching practices.</p>","PeriodicalId":520349,"journal":{"name":"Npj health systems","volume":"2 1","pages":"25"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263418/pdf/","citationCount":"0","resultStr":"{\"title\":\"Feasibility of large language models for assessing and coaching surgeons' non-technical skills.\",\"authors\":\"Marian Obuseh, Sneha Singh, Nicholas E Anton, Robin Gardiner, Dimitrios Stefanidis, Denny Yu\",\"doi\":\"10.1038/s44401-025-00027-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study demonstrates Large Language models (LLMs) to assess and coach surgeons on their non-technical skills, traditionally evaluated through subjective and resource-intensive methods. Llama 3.1 and Mistral effectively analyzed robotic-assisted surgery transcripts, identified exemplar and non-exemplar behaviors, and autonomously generated structured coaching feedback to guide surgeons' improvement. Our findings highlight the potential of LLMs as scalable, data-driven tools for enhancing surgical education and supporting consistent coaching practices.</p>\",\"PeriodicalId\":520349,\"journal\":{\"name\":\"Npj health systems\",\"volume\":\"2 1\",\"pages\":\"25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263418/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Npj health systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44401-025-00027-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npj health systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44401-025-00027-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究展示了大型语言模型(LLMs)来评估和指导外科医生的非技术技能,传统上通过主观和资源密集型方法进行评估。Llama 3.1和Mistral有效地分析了机器人辅助手术的记录,识别了典型和非典型行为,并自主生成结构化的指导反馈,以指导外科医生的改进。我们的研究结果强调了llm作为可扩展的、数据驱动的工具的潜力,可以加强外科教育和支持一致的指导实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feasibility of large language models for assessing and coaching surgeons' non-technical skills.

This study demonstrates Large Language models (LLMs) to assess and coach surgeons on their non-technical skills, traditionally evaluated through subjective and resource-intensive methods. Llama 3.1 and Mistral effectively analyzed robotic-assisted surgery transcripts, identified exemplar and non-exemplar behaviors, and autonomously generated structured coaching feedback to guide surgeons' improvement. Our findings highlight the potential of LLMs as scalable, data-driven tools for enhancing surgical education and supporting consistent coaching practices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信