{"title":"X-CRISP:区域适应性和可解释的CRISPR修复结果预测。","authors":"Colm Seale, Joana P Gonçalves","doi":"10.1093/bioadv/vbaf157","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Controlling the outcomes of CRISPR editing is crucial for the success of gene therapy. Since donor template-based editing is often inefficient, alternative strategies have emerged that leverage mutagenic end-joining repair instead. Existing machine learning models can accurately predict end-joining repair outcomes; however, generalisability beyond the specific cell line used for training remains a challenge, and interpretability is typically limited by suboptimal feature representation and model architecture.</p><p><strong>Results: </strong>We propose X-CRISP, a flexible and interpretable neural network for predicting repair outcome frequencies based on a minimal set of outcome and sequence features, including microhomologies (MH). Outperforming prior models on detailed and aggregate outcome predictions, X-CRISP prioritised MH location over MH sequence properties such as GC content for deletion outcomes. Through transfer learning, we adapted X-CRISP pre-trained on wild-type mESC data to target human cell lines K562, HAP1, U2OS, and mESC lines with altered DNA repair function. Adapted X-CRISP models improved over direct training on target data from as few as 50 samples, suggesting that this strategy could be leveraged to build models for new domains using a fraction of the data required to train models from scratch.</p><p><strong>Availability and implementation: </strong>X-CRISP is available at https://github.com/joanagoncalveslab/xcrisp.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf157"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12270252/pdf/","citationCount":"0","resultStr":"{\"title\":\"X-CRISP: domain-adaptable and interpretable CRISPR repair outcome prediction.\",\"authors\":\"Colm Seale, Joana P Gonçalves\",\"doi\":\"10.1093/bioadv/vbaf157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Controlling the outcomes of CRISPR editing is crucial for the success of gene therapy. Since donor template-based editing is often inefficient, alternative strategies have emerged that leverage mutagenic end-joining repair instead. Existing machine learning models can accurately predict end-joining repair outcomes; however, generalisability beyond the specific cell line used for training remains a challenge, and interpretability is typically limited by suboptimal feature representation and model architecture.</p><p><strong>Results: </strong>We propose X-CRISP, a flexible and interpretable neural network for predicting repair outcome frequencies based on a minimal set of outcome and sequence features, including microhomologies (MH). Outperforming prior models on detailed and aggregate outcome predictions, X-CRISP prioritised MH location over MH sequence properties such as GC content for deletion outcomes. Through transfer learning, we adapted X-CRISP pre-trained on wild-type mESC data to target human cell lines K562, HAP1, U2OS, and mESC lines with altered DNA repair function. Adapted X-CRISP models improved over direct training on target data from as few as 50 samples, suggesting that this strategy could be leveraged to build models for new domains using a fraction of the data required to train models from scratch.</p><p><strong>Availability and implementation: </strong>X-CRISP is available at https://github.com/joanagoncalveslab/xcrisp.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbaf157\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12270252/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbaf157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
X-CRISP: domain-adaptable and interpretable CRISPR repair outcome prediction.
Motivation: Controlling the outcomes of CRISPR editing is crucial for the success of gene therapy. Since donor template-based editing is often inefficient, alternative strategies have emerged that leverage mutagenic end-joining repair instead. Existing machine learning models can accurately predict end-joining repair outcomes; however, generalisability beyond the specific cell line used for training remains a challenge, and interpretability is typically limited by suboptimal feature representation and model architecture.
Results: We propose X-CRISP, a flexible and interpretable neural network for predicting repair outcome frequencies based on a minimal set of outcome and sequence features, including microhomologies (MH). Outperforming prior models on detailed and aggregate outcome predictions, X-CRISP prioritised MH location over MH sequence properties such as GC content for deletion outcomes. Through transfer learning, we adapted X-CRISP pre-trained on wild-type mESC data to target human cell lines K562, HAP1, U2OS, and mESC lines with altered DNA repair function. Adapted X-CRISP models improved over direct training on target data from as few as 50 samples, suggesting that this strategy could be leveraged to build models for new domains using a fraction of the data required to train models from scratch.
Availability and implementation: X-CRISP is available at https://github.com/joanagoncalveslab/xcrisp.