Jieun Park, Chaithanya Chelakkot, Ji-Hye Nam, Hun Seok Lee, Chae Rin Kim, Yeonwoo Lee, Mi-Sook Lee, Yoon-La Choi, Young Kee Shin
{"title":"癌症中的MET改变和MET靶向治疗:检测策略、治疗效果和新兴技术。","authors":"Jieun Park, Chaithanya Chelakkot, Ji-Hye Nam, Hun Seok Lee, Chae Rin Kim, Yeonwoo Lee, Mi-Sook Lee, Yoon-La Choi, Young Kee Shin","doi":"10.1007/s11523-025-01166-0","DOIUrl":null,"url":null,"abstract":"<p><p>The MET signaling pathway is dysregulated in several cancers through various mechanisms, including gene mutations, amplifications, rearrangements, and protein overexpression. MET inhibitors have demonstrated clinical benefits in solid tumors including non-small-cell lung cancer (NSCLC), highlighting the importance of optimizing MET alteration detection methods and cut-off values to enhance the efficacy of MET-targeted therapies and improve patient outcomes. Research on MET alterations has primarily focused on MET exon 14 skipping mutations, MET amplification, and MET overexpression. This review summarizes the frequency of MET alterations across different cancer types and the clinical validation of MET alterations in MET-targeted therapies, offering a detailed comparison of objective response rates (ORR) for therapies including crizotinib, capmatinib, tepotinib, savolitinib, telisotuzumab vedotin, telisotuzumab adizutecan, and amivantamab. The review also addresses the challenges in detecting MET exon 14 skipping mutations, such as issues with false positives and negatives, and underscores the need for standardization in MET amplification detection. Trials vary in their cut-offs for MET gene copy number (GCN) and MET/CEP7 ratio and MET expression detection methods, leading to inconsistencies in detection. Additionally, emerging technologies such as circulating tumor DNA (ctDNA) and circulating tumor cell (CTC) analyses have been investigated for their potential to improve MET alterations detection. This review also highlights studies that demonstrate the potential of MET ctDNA and CTC analyses to predict treatment responses and identify resistance mechanisms in MET-targeted therapies.</p>","PeriodicalId":22195,"journal":{"name":"Targeted Oncology","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MET Alterations in Cancer and MET-Targeted Therapy: Detection Strategies, Treatment Efficacy, and Emerging Technologies.\",\"authors\":\"Jieun Park, Chaithanya Chelakkot, Ji-Hye Nam, Hun Seok Lee, Chae Rin Kim, Yeonwoo Lee, Mi-Sook Lee, Yoon-La Choi, Young Kee Shin\",\"doi\":\"10.1007/s11523-025-01166-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The MET signaling pathway is dysregulated in several cancers through various mechanisms, including gene mutations, amplifications, rearrangements, and protein overexpression. MET inhibitors have demonstrated clinical benefits in solid tumors including non-small-cell lung cancer (NSCLC), highlighting the importance of optimizing MET alteration detection methods and cut-off values to enhance the efficacy of MET-targeted therapies and improve patient outcomes. Research on MET alterations has primarily focused on MET exon 14 skipping mutations, MET amplification, and MET overexpression. This review summarizes the frequency of MET alterations across different cancer types and the clinical validation of MET alterations in MET-targeted therapies, offering a detailed comparison of objective response rates (ORR) for therapies including crizotinib, capmatinib, tepotinib, savolitinib, telisotuzumab vedotin, telisotuzumab adizutecan, and amivantamab. The review also addresses the challenges in detecting MET exon 14 skipping mutations, such as issues with false positives and negatives, and underscores the need for standardization in MET amplification detection. Trials vary in their cut-offs for MET gene copy number (GCN) and MET/CEP7 ratio and MET expression detection methods, leading to inconsistencies in detection. Additionally, emerging technologies such as circulating tumor DNA (ctDNA) and circulating tumor cell (CTC) analyses have been investigated for their potential to improve MET alterations detection. This review also highlights studies that demonstrate the potential of MET ctDNA and CTC analyses to predict treatment responses and identify resistance mechanisms in MET-targeted therapies.</p>\",\"PeriodicalId\":22195,\"journal\":{\"name\":\"Targeted Oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Targeted Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11523-025-01166-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Targeted Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11523-025-01166-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
MET Alterations in Cancer and MET-Targeted Therapy: Detection Strategies, Treatment Efficacy, and Emerging Technologies.
The MET signaling pathway is dysregulated in several cancers through various mechanisms, including gene mutations, amplifications, rearrangements, and protein overexpression. MET inhibitors have demonstrated clinical benefits in solid tumors including non-small-cell lung cancer (NSCLC), highlighting the importance of optimizing MET alteration detection methods and cut-off values to enhance the efficacy of MET-targeted therapies and improve patient outcomes. Research on MET alterations has primarily focused on MET exon 14 skipping mutations, MET amplification, and MET overexpression. This review summarizes the frequency of MET alterations across different cancer types and the clinical validation of MET alterations in MET-targeted therapies, offering a detailed comparison of objective response rates (ORR) for therapies including crizotinib, capmatinib, tepotinib, savolitinib, telisotuzumab vedotin, telisotuzumab adizutecan, and amivantamab. The review also addresses the challenges in detecting MET exon 14 skipping mutations, such as issues with false positives and negatives, and underscores the need for standardization in MET amplification detection. Trials vary in their cut-offs for MET gene copy number (GCN) and MET/CEP7 ratio and MET expression detection methods, leading to inconsistencies in detection. Additionally, emerging technologies such as circulating tumor DNA (ctDNA) and circulating tumor cell (CTC) analyses have been investigated for their potential to improve MET alterations detection. This review also highlights studies that demonstrate the potential of MET ctDNA and CTC analyses to predict treatment responses and identify resistance mechanisms in MET-targeted therapies.
期刊介绍:
Targeted Oncology addresses physicians and scientists committed to oncology and cancer research by providing a programme of articles on molecularly targeted pharmacotherapy in oncology. The journal includes:
Original Research Articles on all aspects of molecularly targeted agents for the treatment of cancer, including immune checkpoint inhibitors and related approaches.
Comprehensive narrative Review Articles and shorter Leading Articles discussing relevant clinically established as well as emerging agents and pathways.
Current Opinion articles that place interesting areas in perspective.
Therapy in Practice articles that provide a guide to the optimum management of a condition and highlight practical, clinically relevant considerations and recommendations.
Systematic Reviews that use explicit, systematic methods as outlined by the PRISMA statement.
Adis Drug Reviews of the properties and place in therapy of both newer and established targeted drugs in oncology.