孕烷X受体激活通过上调FSP1诱导铁下垂抗性。

IF 3.2 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular Carcinogenesis Pub Date : 2025-10-01 Epub Date: 2025-07-17 DOI:10.1002/mc.70016
Yingying Shang, Qi Yao, Ya Tan, Ruipeng Bian, Yanni Ma, Yuanze Zhou, Rong Mu, Nahua Xu, Yanyun Shi, Nan Lu, Lin Liu, Jieping Chen, Shuangnian Xu, Hui Li
{"title":"孕烷X受体激活通过上调FSP1诱导铁下垂抗性。","authors":"Yingying Shang, Qi Yao, Ya Tan, Ruipeng Bian, Yanni Ma, Yuanze Zhou, Rong Mu, Nahua Xu, Yanyun Shi, Nan Lu, Lin Liu, Jieping Chen, Shuangnian Xu, Hui Li","doi":"10.1002/mc.70016","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis, an iron-dependent form of programmed cell death, is emerging as a novel approach to tackling cancer. Cancer cells require large amounts of iron for their rapid growth, making them intrinsically vulnerable to ferroptosis. However, cancer cells have developed several important antioxidant pathways to counteract ferroptosis. One of these key pathways is the FSP1/CoQH2 pathway. In this study, we reveal a new regulatory mechanism of FSP1 involving the Pregnane X Receptor (PXR). Activation of PXR by rifaximin and rifampicin suppresses ferroptosis in a variety of cancer cells from different origins. The protective effect of rifaximin and rifampicin is lost in PXR knockout cells or in the presence of PXR inhibitor, validating the role of PXR in mediating the effects of these drugs. Additionally, rifaximin and rifampicin decrease lipid peroxidation and ferrous iron accumulation during ferroptosis induction, effects that are reversed in PXR knockout cells. Mechanistically, rifaximin and rifampicin induce the expression of FSP1 in a PXR-dependent manner, as they fail to induce FSP1 in PXR knockout cells. Furthermore, the ferroptosis protection effect of rifaximin and rifampicin is significantly compromised in FSP1 knockout cells or in the presence of the FSP1 inhibitor iFSP1. Importantly, we demonstrated that the PXR inhibitor pimecrolimus showed synergy with ferroptosis inducer sulfasalazine to repress tumor growth in vivo. Together, these findings provide evidence supporting an anti-ferroptosis role of PXR through the upregulation of FSP1 expression.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"1620-1637"},"PeriodicalIF":3.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pregnane X Receptor Activation Induces Ferroptosis Resistance Through Upregulation of FSP1.\",\"authors\":\"Yingying Shang, Qi Yao, Ya Tan, Ruipeng Bian, Yanni Ma, Yuanze Zhou, Rong Mu, Nahua Xu, Yanyun Shi, Nan Lu, Lin Liu, Jieping Chen, Shuangnian Xu, Hui Li\",\"doi\":\"10.1002/mc.70016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferroptosis, an iron-dependent form of programmed cell death, is emerging as a novel approach to tackling cancer. Cancer cells require large amounts of iron for their rapid growth, making them intrinsically vulnerable to ferroptosis. However, cancer cells have developed several important antioxidant pathways to counteract ferroptosis. One of these key pathways is the FSP1/CoQH2 pathway. In this study, we reveal a new regulatory mechanism of FSP1 involving the Pregnane X Receptor (PXR). Activation of PXR by rifaximin and rifampicin suppresses ferroptosis in a variety of cancer cells from different origins. The protective effect of rifaximin and rifampicin is lost in PXR knockout cells or in the presence of PXR inhibitor, validating the role of PXR in mediating the effects of these drugs. Additionally, rifaximin and rifampicin decrease lipid peroxidation and ferrous iron accumulation during ferroptosis induction, effects that are reversed in PXR knockout cells. Mechanistically, rifaximin and rifampicin induce the expression of FSP1 in a PXR-dependent manner, as they fail to induce FSP1 in PXR knockout cells. Furthermore, the ferroptosis protection effect of rifaximin and rifampicin is significantly compromised in FSP1 knockout cells or in the presence of the FSP1 inhibitor iFSP1. Importantly, we demonstrated that the PXR inhibitor pimecrolimus showed synergy with ferroptosis inducer sulfasalazine to repress tumor growth in vivo. Together, these findings provide evidence supporting an anti-ferroptosis role of PXR through the upregulation of FSP1 expression.</p>\",\"PeriodicalId\":19003,\"journal\":{\"name\":\"Molecular Carcinogenesis\",\"volume\":\" \",\"pages\":\"1620-1637\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Carcinogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mc.70016\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.70016","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

铁下垂是一种依赖铁的程序性细胞死亡形式,是一种治疗癌症的新方法。癌细胞的快速生长需要大量的铁,这使得它们本质上容易受到铁下垂的影响。然而,癌细胞已经发展出几种重要的抗氧化途径来对抗铁下垂。其中一个关键途径是FSP1/CoQH2途径。在这项研究中,我们揭示了一个涉及妊娠X受体(PXR)的FSP1的新调控机制。利福昔明和利福平激活PXR可抑制不同来源的多种癌细胞的铁下垂。利福昔明和利福平的保护作用在PXR敲除细胞或存在PXR抑制剂时消失,验证了PXR在介导这些药物作用中的作用。此外,利福平和利福昔明可减少铁下垂诱导过程中的脂质过氧化和亚铁积累,这种作用在PXR敲除细胞中被逆转。在机制上,利福平和利福明以PXR依赖的方式诱导FSP1的表达,因为它们不能在PXR敲除细胞中诱导FSP1。此外,在FSP1敲除细胞或FSP1抑制剂iFSP1存在的情况下,利福平和利福昔明对铁凋亡的保护作用显著降低。重要的是,我们证明了PXR抑制剂吡美莫司在体内与铁下垂诱诱剂磺胺氮嗪协同抑制肿瘤生长。总之,这些发现提供了支持PXR通过上调FSP1表达来抗铁下垂作用的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pregnane X Receptor Activation Induces Ferroptosis Resistance Through Upregulation of FSP1.

Ferroptosis, an iron-dependent form of programmed cell death, is emerging as a novel approach to tackling cancer. Cancer cells require large amounts of iron for their rapid growth, making them intrinsically vulnerable to ferroptosis. However, cancer cells have developed several important antioxidant pathways to counteract ferroptosis. One of these key pathways is the FSP1/CoQH2 pathway. In this study, we reveal a new regulatory mechanism of FSP1 involving the Pregnane X Receptor (PXR). Activation of PXR by rifaximin and rifampicin suppresses ferroptosis in a variety of cancer cells from different origins. The protective effect of rifaximin and rifampicin is lost in PXR knockout cells or in the presence of PXR inhibitor, validating the role of PXR in mediating the effects of these drugs. Additionally, rifaximin and rifampicin decrease lipid peroxidation and ferrous iron accumulation during ferroptosis induction, effects that are reversed in PXR knockout cells. Mechanistically, rifaximin and rifampicin induce the expression of FSP1 in a PXR-dependent manner, as they fail to induce FSP1 in PXR knockout cells. Furthermore, the ferroptosis protection effect of rifaximin and rifampicin is significantly compromised in FSP1 knockout cells or in the presence of the FSP1 inhibitor iFSP1. Importantly, we demonstrated that the PXR inhibitor pimecrolimus showed synergy with ferroptosis inducer sulfasalazine to repress tumor growth in vivo. Together, these findings provide evidence supporting an anti-ferroptosis role of PXR through the upregulation of FSP1 expression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Carcinogenesis
Molecular Carcinogenesis 医学-生化与分子生物学
CiteScore
7.30
自引率
2.20%
发文量
112
审稿时长
2 months
期刊介绍: Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信