人工智能驱动的抗体设计与优化计算方法。

IF 7.3 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
mAbs Pub Date : 2025-12-01 Epub Date: 2025-07-18 DOI:10.1080/19420862.2025.2528902
Luiz Felipe Vecchietti, Bryan Nathanael Wijaya, Azamat Armanuly, Begench Hangeldiyev, Hyunkyu Jung, Sooyeon Lee, Meeyoung Cha, Ho Min Kim
{"title":"人工智能驱动的抗体设计与优化计算方法。","authors":"Luiz Felipe Vecchietti, Bryan Nathanael Wijaya, Azamat Armanuly, Begench Hangeldiyev, Hyunkyu Jung, Sooyeon Lee, Meeyoung Cha, Ho Min Kim","doi":"10.1080/19420862.2025.2528902","DOIUrl":null,"url":null,"abstract":"<p><p>Antibodies play a crucial role in our immune system. Their ability to bind to and neutralize pathogens opens opportunities to develop antibodies for therapeutic and diagnostic use. Computational methods capable of designing antibodies for a target antigen can revolutionize drug discovery, reducing the time and cost required for drug development. Artificial intelligence (AI) methods have recently achieved remarkable advancements in the design of protein sequences and structures, including the ability to generate scaffolds for a given motif and binders for a specific target. These generative methods have been applied to antigen-conditioned antibody design, with experimental binding confirmed for de novo-designed antibodies. This review surveys current AI methods used in antibody development, focusing on those for antigen-conditioned antibody design. The results obtained by AI-based methodologies in antibody and protein research suggest a promising direction for generating de novo binders for various target antigens.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"17 1","pages":"2528902"},"PeriodicalIF":7.3000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279266/pdf/","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-driven computational methods for antibody design and optimization.\",\"authors\":\"Luiz Felipe Vecchietti, Bryan Nathanael Wijaya, Azamat Armanuly, Begench Hangeldiyev, Hyunkyu Jung, Sooyeon Lee, Meeyoung Cha, Ho Min Kim\",\"doi\":\"10.1080/19420862.2025.2528902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibodies play a crucial role in our immune system. Their ability to bind to and neutralize pathogens opens opportunities to develop antibodies for therapeutic and diagnostic use. Computational methods capable of designing antibodies for a target antigen can revolutionize drug discovery, reducing the time and cost required for drug development. Artificial intelligence (AI) methods have recently achieved remarkable advancements in the design of protein sequences and structures, including the ability to generate scaffolds for a given motif and binders for a specific target. These generative methods have been applied to antigen-conditioned antibody design, with experimental binding confirmed for de novo-designed antibodies. This review surveys current AI methods used in antibody development, focusing on those for antigen-conditioned antibody design. The results obtained by AI-based methodologies in antibody and protein research suggest a promising direction for generating de novo binders for various target antigens.</p>\",\"PeriodicalId\":18206,\"journal\":{\"name\":\"mAbs\",\"volume\":\"17 1\",\"pages\":\"2528902\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279266/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mAbs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19420862.2025.2528902\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mAbs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19420862.2025.2528902","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

抗体在我们的免疫系统中起着至关重要的作用。它们结合和中和病原体的能力为开发用于治疗和诊断的抗体提供了机会。能够为目标抗原设计抗体的计算方法可以彻底改变药物发现,减少药物开发所需的时间和成本。人工智能(AI)方法最近在蛋白质序列和结构的设计方面取得了显着进展,包括为给定基序和特定靶标的结合剂生成支架的能力。这些生成方法已应用于抗原条件抗体设计,实验结合证实了新设计的抗体。本文综述了目前用于抗体开发的人工智能方法,重点是抗原条件抗体设计的人工智能方法。基于人工智能的方法在抗体和蛋白质研究中获得的结果表明,为各种靶抗原生成从头结合物提供了一个有希望的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Artificial intelligence-driven computational methods for antibody design and optimization.

Artificial intelligence-driven computational methods for antibody design and optimization.

Artificial intelligence-driven computational methods for antibody design and optimization.

Artificial intelligence-driven computational methods for antibody design and optimization.

Antibodies play a crucial role in our immune system. Their ability to bind to and neutralize pathogens opens opportunities to develop antibodies for therapeutic and diagnostic use. Computational methods capable of designing antibodies for a target antigen can revolutionize drug discovery, reducing the time and cost required for drug development. Artificial intelligence (AI) methods have recently achieved remarkable advancements in the design of protein sequences and structures, including the ability to generate scaffolds for a given motif and binders for a specific target. These generative methods have been applied to antigen-conditioned antibody design, with experimental binding confirmed for de novo-designed antibodies. This review surveys current AI methods used in antibody development, focusing on those for antigen-conditioned antibody design. The results obtained by AI-based methodologies in antibody and protein research suggest a promising direction for generating de novo binders for various target antigens.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mAbs
mAbs 工程技术-仪器仪表
CiteScore
10.70
自引率
11.30%
发文量
77
审稿时长
6-12 weeks
期刊介绍: mAbs is a multi-disciplinary journal dedicated to the art and science of antibody research and development. The journal has a strong scientific and medical focus, but also strives to serve a broader readership. The articles are thus of interest to scientists, clinical researchers, and physicians, as well as the wider mAb community, including our readers involved in technology transfer, legal issues, investment, strategic planning and the regulation of therapeutics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信