Bo Li, Li Wang, Yan Xiao, Zhi Tang, Yang Wang, Ting Sun, Xiaolan Qi
{"title":"调节神经元α1-肾上腺素能受体通过抑制STING/NF-κB/NLRP3信号通路减少阿尔茨海默病小鼠的tau病变和神经炎症。","authors":"Bo Li, Li Wang, Yan Xiao, Zhi Tang, Yang Wang, Ting Sun, Xiaolan Qi","doi":"10.1186/s12974-025-03506-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neuroinflammation is closely associated with the pathological progression of Alzheimer's disease (AD). The α1-adrenergic receptor (ADRA1), a G protein-coupled receptor, has been identified as a critical therapeutic target in inflammatory disorders. However, its precise mechanistic role in AD pathogenesis remains unclear.</p><p><strong>Methods: </strong>To investigate ADRA1's role in AD, we employed 3xTg-AD and wild-type (WT) mice, modulating neuronal ADRA1 expression via intracerebroventricular delivery of adeno-associated viruses. Cognitive function, tau pathology, neuronal morphology, and activation of the STING/NF-κB/NLRP3 signaling pathway were evaluated using behavioral tests, Western blot, Golgi-Cox staining, immunohistochemistry, and immunofluorescence. In vitro AD models were established using Aβ<sub>42</sub> oligomer-stimulated SH-SY5Y cells and primary murine neurons, along with SH-SY5Y cells transfected with full-length human tau (SH-SY5Y/htau). Pharmacological antagonists, inhibitors, lentiviral transduction, co-immunoprecipitation, and calcium flux assays were utilized to dissect ADRA1-mediated molecular mechanisms in tauopathy and neuroinflammation.</p><p><strong>Results: </strong>Hippocampal ADRA1 expression was significantly elevated in 10-month-old 3xTg-AD mice. Neuronal ADRA1 knockdown suppressed STING/NF-κB/NLRP3 pathway activation, ameliorated tauopathy and neuroinflammation, restored neuronal structure/function, and improved cognitive deficits in 3xTg-AD mice. Conversely, ADRA1 overexpression in C57/BL6 mice induced tauopathy, neuroinflammation, and cognitive impairment. Mechanistically, ADRA1 interacts with CXCR4 to form heterodimers, triggering cytoplasmic Ca<sup>2</sup>⁺ overload and subsequent STING/NF-κB/NLRP3 pathway activation.</p><p><strong>Conclusions: </strong>ADRA1 critically mediates tauopathy and neuroinflammation through STING/NF-κB/NLRP3 signaling. These results identify ADRA1 as a promising therapeutic target for AD prevention and treatment.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"187"},"PeriodicalIF":10.1000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12273325/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modulation of neuronal α1-adrenergic receptor reduces tauopathy and neuroinflammation by inhibiting the STING/NF-κB/NLRP3 signaling pathway in Alzheimer's disease mice.\",\"authors\":\"Bo Li, Li Wang, Yan Xiao, Zhi Tang, Yang Wang, Ting Sun, Xiaolan Qi\",\"doi\":\"10.1186/s12974-025-03506-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Neuroinflammation is closely associated with the pathological progression of Alzheimer's disease (AD). The α1-adrenergic receptor (ADRA1), a G protein-coupled receptor, has been identified as a critical therapeutic target in inflammatory disorders. However, its precise mechanistic role in AD pathogenesis remains unclear.</p><p><strong>Methods: </strong>To investigate ADRA1's role in AD, we employed 3xTg-AD and wild-type (WT) mice, modulating neuronal ADRA1 expression via intracerebroventricular delivery of adeno-associated viruses. Cognitive function, tau pathology, neuronal morphology, and activation of the STING/NF-κB/NLRP3 signaling pathway were evaluated using behavioral tests, Western blot, Golgi-Cox staining, immunohistochemistry, and immunofluorescence. In vitro AD models were established using Aβ<sub>42</sub> oligomer-stimulated SH-SY5Y cells and primary murine neurons, along with SH-SY5Y cells transfected with full-length human tau (SH-SY5Y/htau). Pharmacological antagonists, inhibitors, lentiviral transduction, co-immunoprecipitation, and calcium flux assays were utilized to dissect ADRA1-mediated molecular mechanisms in tauopathy and neuroinflammation.</p><p><strong>Results: </strong>Hippocampal ADRA1 expression was significantly elevated in 10-month-old 3xTg-AD mice. Neuronal ADRA1 knockdown suppressed STING/NF-κB/NLRP3 pathway activation, ameliorated tauopathy and neuroinflammation, restored neuronal structure/function, and improved cognitive deficits in 3xTg-AD mice. Conversely, ADRA1 overexpression in C57/BL6 mice induced tauopathy, neuroinflammation, and cognitive impairment. Mechanistically, ADRA1 interacts with CXCR4 to form heterodimers, triggering cytoplasmic Ca<sup>2</sup>⁺ overload and subsequent STING/NF-κB/NLRP3 pathway activation.</p><p><strong>Conclusions: </strong>ADRA1 critically mediates tauopathy and neuroinflammation through STING/NF-κB/NLRP3 signaling. These results identify ADRA1 as a promising therapeutic target for AD prevention and treatment.</p>\",\"PeriodicalId\":16577,\"journal\":{\"name\":\"Journal of Neuroinflammation\",\"volume\":\"22 1\",\"pages\":\"187\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12273325/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroinflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12974-025-03506-3\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-025-03506-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Modulation of neuronal α1-adrenergic receptor reduces tauopathy and neuroinflammation by inhibiting the STING/NF-κB/NLRP3 signaling pathway in Alzheimer's disease mice.
Background: Neuroinflammation is closely associated with the pathological progression of Alzheimer's disease (AD). The α1-adrenergic receptor (ADRA1), a G protein-coupled receptor, has been identified as a critical therapeutic target in inflammatory disorders. However, its precise mechanistic role in AD pathogenesis remains unclear.
Methods: To investigate ADRA1's role in AD, we employed 3xTg-AD and wild-type (WT) mice, modulating neuronal ADRA1 expression via intracerebroventricular delivery of adeno-associated viruses. Cognitive function, tau pathology, neuronal morphology, and activation of the STING/NF-κB/NLRP3 signaling pathway were evaluated using behavioral tests, Western blot, Golgi-Cox staining, immunohistochemistry, and immunofluorescence. In vitro AD models were established using Aβ42 oligomer-stimulated SH-SY5Y cells and primary murine neurons, along with SH-SY5Y cells transfected with full-length human tau (SH-SY5Y/htau). Pharmacological antagonists, inhibitors, lentiviral transduction, co-immunoprecipitation, and calcium flux assays were utilized to dissect ADRA1-mediated molecular mechanisms in tauopathy and neuroinflammation.
Results: Hippocampal ADRA1 expression was significantly elevated in 10-month-old 3xTg-AD mice. Neuronal ADRA1 knockdown suppressed STING/NF-κB/NLRP3 pathway activation, ameliorated tauopathy and neuroinflammation, restored neuronal structure/function, and improved cognitive deficits in 3xTg-AD mice. Conversely, ADRA1 overexpression in C57/BL6 mice induced tauopathy, neuroinflammation, and cognitive impairment. Mechanistically, ADRA1 interacts with CXCR4 to form heterodimers, triggering cytoplasmic Ca2⁺ overload and subsequent STING/NF-κB/NLRP3 pathway activation.
Conclusions: ADRA1 critically mediates tauopathy and neuroinflammation through STING/NF-κB/NLRP3 signaling. These results identify ADRA1 as a promising therapeutic target for AD prevention and treatment.
期刊介绍:
The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes.
Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems.
The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.