{"title":"2列表对应的量子仿射代数素模的分类。","authors":"Nick Early, Jian-Rong Li","doi":"10.1007/s10801-025-01435-1","DOIUrl":null,"url":null,"abstract":"<p><p>Finite-dimensional simple modules of quantum affine algebras of type A correspond to semistandard Young tableaux of rectangular shapes. In this paper, we classify all prime modules corresponding to 2-column semistandard Young tableaux, up to a conjectural property. Moreover, we give a conjectural sufficient condition for a module corresponding to a tableau with more than two columns to be prime.</p>","PeriodicalId":14926,"journal":{"name":"Journal of Algebraic Combinatorics","volume":"62 1","pages":"6"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263800/pdf/","citationCount":"0","resultStr":"{\"title\":\"Classification of prime modules of quantum affine algebras corresponding to 2-column tableaux.\",\"authors\":\"Nick Early, Jian-Rong Li\",\"doi\":\"10.1007/s10801-025-01435-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Finite-dimensional simple modules of quantum affine algebras of type A correspond to semistandard Young tableaux of rectangular shapes. In this paper, we classify all prime modules corresponding to 2-column semistandard Young tableaux, up to a conjectural property. Moreover, we give a conjectural sufficient condition for a module corresponding to a tableau with more than two columns to be prime.</p>\",\"PeriodicalId\":14926,\"journal\":{\"name\":\"Journal of Algebraic Combinatorics\",\"volume\":\"62 1\",\"pages\":\"6\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263800/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-025-01435-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-025-01435-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Classification of prime modules of quantum affine algebras corresponding to 2-column tableaux.
Finite-dimensional simple modules of quantum affine algebras of type A correspond to semistandard Young tableaux of rectangular shapes. In this paper, we classify all prime modules corresponding to 2-column semistandard Young tableaux, up to a conjectural property. Moreover, we give a conjectural sufficient condition for a module corresponding to a tableau with more than two columns to be prime.
期刊介绍:
The Journal of Algebraic Combinatorics provides a single forum for papers on algebraic combinatorics which, at present, are distributed throughout a number of journals. Within the last decade or so, algebraic combinatorics has evolved into a mature, established and identifiable area of mathematics. Research contributions in the field are increasingly seen to have substantial links with other areas of mathematics.
The journal publishes papers in which combinatorics and algebra interact in a significant and interesting fashion. This interaction might occur through the study of combinatorial structures using algebraic methods, or the application of combinatorial methods to algebraic problems.