通过新的机器学习模型构建,仅基于常规血液检查特征识别川崎病的风险。

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Computational and structural biotechnology journal Pub Date : 2025-06-25 eCollection Date: 2025-01-01 DOI:10.1016/j.csbj.2025.06.037
Tzu-Hsien Yang, Ying-Hsien Huang, Yuan-Han Lee, Jie-Nan Lai, Kuang-Den Chen, Mindy Ming-Huey Guo, Yan Pan, Chun-Yu Chen, Wei-Sheng Wu, Ho-Chang Kuo
{"title":"通过新的机器学习模型构建,仅基于常规血液检查特征识别川崎病的风险。","authors":"Tzu-Hsien Yang, Ying-Hsien Huang, Yuan-Han Lee, Jie-Nan Lai, Kuang-Den Chen, Mindy Ming-Huey Guo, Yan Pan, Chun-Yu Chen, Wei-Sheng Wu, Ho-Chang Kuo","doi":"10.1016/j.csbj.2025.06.037","DOIUrl":null,"url":null,"abstract":"<p><p>Kawasaki disease (KD) is a leading cause of acquired coronary vasculitis in children and remains a critical diagnostic challenge among febrile pediatric patients. To support frontline pediatricians with a more objective diagnostic tool, we developed and implemented KDpredictor, a machine learning-based model for KD risk identification. KDpredictor leverages only the routine blood test features, including complete blood count with differential count, C-reactive protein, and alanine aminotransferase. It also takes the lead in using age-calibrated eosinophil, platelet, and hemoglobin results. Trained using the light gradient boosting machine algorithm on clinical data from 1,927 KD cases and 45,274 febrile controls, KDpredictor achieved strong performance metrics (auROC: 95.7%, auPRC: 72.4%, recall: 0.89) on a reserved test set, outperforming previous models by at least 3% in auROC and 39.3% in auPRC. Additional explainable AI analyses revealed that several top predictive features in KDpredictor are consistent with prior clinical findings. We also evaluated KDpredictor on three independent cohorts collected in East Asia (Taiwan and China) during the COVID-19 period. KDpredictor achieves recall values of 90.9%, 83.7%, and 91.7% on KD samples identified in three independent medical centers, respectively, indicating its applicability across independent clinical settings. In summary, KDpredictor demonstrates robust generalizability in KD risk identification across populations by using only standard blood samples independent of clinical symptoms. KDpredictor is freely available at https://cosbi.ee.ncku.edu.tw/KD_under7/.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"2832-2842"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12268775/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identifying the risk of Kawasaki disease based solely on routine blood test features through novel construction of machine learning models.\",\"authors\":\"Tzu-Hsien Yang, Ying-Hsien Huang, Yuan-Han Lee, Jie-Nan Lai, Kuang-Den Chen, Mindy Ming-Huey Guo, Yan Pan, Chun-Yu Chen, Wei-Sheng Wu, Ho-Chang Kuo\",\"doi\":\"10.1016/j.csbj.2025.06.037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Kawasaki disease (KD) is a leading cause of acquired coronary vasculitis in children and remains a critical diagnostic challenge among febrile pediatric patients. To support frontline pediatricians with a more objective diagnostic tool, we developed and implemented KDpredictor, a machine learning-based model for KD risk identification. KDpredictor leverages only the routine blood test features, including complete blood count with differential count, C-reactive protein, and alanine aminotransferase. It also takes the lead in using age-calibrated eosinophil, platelet, and hemoglobin results. Trained using the light gradient boosting machine algorithm on clinical data from 1,927 KD cases and 45,274 febrile controls, KDpredictor achieved strong performance metrics (auROC: 95.7%, auPRC: 72.4%, recall: 0.89) on a reserved test set, outperforming previous models by at least 3% in auROC and 39.3% in auPRC. Additional explainable AI analyses revealed that several top predictive features in KDpredictor are consistent with prior clinical findings. We also evaluated KDpredictor on three independent cohorts collected in East Asia (Taiwan and China) during the COVID-19 period. KDpredictor achieves recall values of 90.9%, 83.7%, and 91.7% on KD samples identified in three independent medical centers, respectively, indicating its applicability across independent clinical settings. In summary, KDpredictor demonstrates robust generalizability in KD risk identification across populations by using only standard blood samples independent of clinical symptoms. KDpredictor is freely available at https://cosbi.ee.ncku.edu.tw/KD_under7/.</p>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"2832-2842\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12268775/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2025.06.037\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.06.037","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

川崎病(川崎病)是儿童获得性冠状动脉炎的主要原因,在儿童发热患者中仍然是一个关键的诊断挑战。为了给一线儿科医生提供更客观的诊断工具,我们开发并实施了KDpredictor,这是一种基于机器学习的KD风险识别模型。KDpredictor仅利用常规血液检测特征,包括全血细胞计数与差异计数,c反应蛋白和丙氨酸转氨酶。它还率先使用年龄校准的嗜酸性粒细胞,血小板和血红蛋白结果。使用光梯度增强机算法对1,927例KD病例和45,274例热对照的临床数据进行训练,KDpredictor在保留的测试集上获得了良好的性能指标(auROC: 95.7%, auPRC: 72.4%,召回率:0.89),在auROC和auPRC方面至少比以前的模型高出3%和39.3%。其他可解释的人工智能分析显示,KDpredictor的几个主要预测特征与先前的临床发现一致。​KDpredictor在三个独立医疗中心鉴定的KD样本上分别达到了90.9%、83.7%和91.7%的召回值,表明其在独立临床环境中的适用性。总之,KDpredictor通过仅使用独立于临床症状的标准血液样本,在人群中证明了KD风险识别的强大泛化性。KDpredictor可以在https://cosbi.ee.ncku.edu.tw/KD_under7/免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying the risk of Kawasaki disease based solely on routine blood test features through novel construction of machine learning models.

Kawasaki disease (KD) is a leading cause of acquired coronary vasculitis in children and remains a critical diagnostic challenge among febrile pediatric patients. To support frontline pediatricians with a more objective diagnostic tool, we developed and implemented KDpredictor, a machine learning-based model for KD risk identification. KDpredictor leverages only the routine blood test features, including complete blood count with differential count, C-reactive protein, and alanine aminotransferase. It also takes the lead in using age-calibrated eosinophil, platelet, and hemoglobin results. Trained using the light gradient boosting machine algorithm on clinical data from 1,927 KD cases and 45,274 febrile controls, KDpredictor achieved strong performance metrics (auROC: 95.7%, auPRC: 72.4%, recall: 0.89) on a reserved test set, outperforming previous models by at least 3% in auROC and 39.3% in auPRC. Additional explainable AI analyses revealed that several top predictive features in KDpredictor are consistent with prior clinical findings. We also evaluated KDpredictor on three independent cohorts collected in East Asia (Taiwan and China) during the COVID-19 period. KDpredictor achieves recall values of 90.9%, 83.7%, and 91.7% on KD samples identified in three independent medical centers, respectively, indicating its applicability across independent clinical settings. In summary, KDpredictor demonstrates robust generalizability in KD risk identification across populations by using only standard blood samples independent of clinical symptoms. KDpredictor is freely available at https://cosbi.ee.ncku.edu.tw/KD_under7/.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信