{"title":"基于噬菌体的传染病生物控制和治疗策略。","authors":"Trinh Thi Trang Nhung, Swati Verma, Saravanaraman Ponne, Gautam Kumar Meghwanshi, Thomas Schön, Rajender Kumar","doi":"10.1016/j.csbj.2025.06.046","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteriophages are viruses that infect bacteria, which are essential for controlling bacterial diversity. Among the novel aspects, phage display-based strategies are used for epitope mapping and the development of immunotherapy. A recent classification system has been developed based on the recent sequencing methods and bioinformatic tools. The unique specificity of phages is of increasing use in biocontrol, where bacteriophages are applied to target and reduce harmful bacterial populations in agriculture, food preservation and safety, offering a sustainable alternative to chemical exposure and a plausible solution to excessive misuse of antibiotics. Phage therapy has emerged as a complement to antibiotics for difficult-to-treat infectious diseases such as multi-drug resistant bacteria where other alternatives are lacking. The ability of bacteriophages to specifically target pathogenic bacteria while sparing the normal flora makes them attractive treatment options. Among the challenges are the slow uptake of phage therapy in the clinical setting, a lack of standardisation and regulatory issues. Nevertheless, phage-based strategies are likely to become a future cornerstone for biocontrol and treatment of infectious diseases.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"2924-2932"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12270615/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bacteriophage-based strategies for biocontrol and treatment of infectious diseases.\",\"authors\":\"Trinh Thi Trang Nhung, Swati Verma, Saravanaraman Ponne, Gautam Kumar Meghwanshi, Thomas Schön, Rajender Kumar\",\"doi\":\"10.1016/j.csbj.2025.06.046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacteriophages are viruses that infect bacteria, which are essential for controlling bacterial diversity. Among the novel aspects, phage display-based strategies are used for epitope mapping and the development of immunotherapy. A recent classification system has been developed based on the recent sequencing methods and bioinformatic tools. The unique specificity of phages is of increasing use in biocontrol, where bacteriophages are applied to target and reduce harmful bacterial populations in agriculture, food preservation and safety, offering a sustainable alternative to chemical exposure and a plausible solution to excessive misuse of antibiotics. Phage therapy has emerged as a complement to antibiotics for difficult-to-treat infectious diseases such as multi-drug resistant bacteria where other alternatives are lacking. The ability of bacteriophages to specifically target pathogenic bacteria while sparing the normal flora makes them attractive treatment options. Among the challenges are the slow uptake of phage therapy in the clinical setting, a lack of standardisation and regulatory issues. Nevertheless, phage-based strategies are likely to become a future cornerstone for biocontrol and treatment of infectious diseases.</p>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"2924-2932\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12270615/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2025.06.046\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.06.046","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Bacteriophage-based strategies for biocontrol and treatment of infectious diseases.
Bacteriophages are viruses that infect bacteria, which are essential for controlling bacterial diversity. Among the novel aspects, phage display-based strategies are used for epitope mapping and the development of immunotherapy. A recent classification system has been developed based on the recent sequencing methods and bioinformatic tools. The unique specificity of phages is of increasing use in biocontrol, where bacteriophages are applied to target and reduce harmful bacterial populations in agriculture, food preservation and safety, offering a sustainable alternative to chemical exposure and a plausible solution to excessive misuse of antibiotics. Phage therapy has emerged as a complement to antibiotics for difficult-to-treat infectious diseases such as multi-drug resistant bacteria where other alternatives are lacking. The ability of bacteriophages to specifically target pathogenic bacteria while sparing the normal flora makes them attractive treatment options. Among the challenges are the slow uptake of phage therapy in the clinical setting, a lack of standardisation and regulatory issues. Nevertheless, phage-based strategies are likely to become a future cornerstone for biocontrol and treatment of infectious diseases.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology