{"title":"针对最新H5N1禽流感毒株的基于人工智能的抗体设计","authors":"Nicholas Santolla, Colby T Ford","doi":"10.1016/j.csbj.2025.06.026","DOIUrl":null,"url":null,"abstract":"<p><p>In 2025 alone, H5N1 avian influenza is responsible for thousands of infections across various animal species, including avian and mammalian livestock such as chickens and cows, and poses a threat to human health due to avian-to-mammalian transmission. There have been 70 human cases of H5N1 influenza in the United States since April 2024 and, as shown in recent studies, our current antibody defenses are waning. Thus, it is imperative to discover new therapeutics in the fight against more recent strains of the virus. In this study, we present the <i>Frankies</i> framework for automated antibody diffusion and assessment. This pipeline was used to automate the generation of 30 novel anti-HA1 Fv antibody fragment sequences, fold them into 3-dimensional structures, and then dock against a recent H5N1 HA1 antigen structure for binding evaluation. Here we show the utility of artificial intelligence in the discovery of novel antibodies against specific H5N1 strains of interest, which bind similarly to known therapeutic and elicited antibodies.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"2915-2923"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12270607/pdf/","citationCount":"0","resultStr":"{\"title\":\"AI-based antibody design targeting recent H5N1 avian influenza strains.\",\"authors\":\"Nicholas Santolla, Colby T Ford\",\"doi\":\"10.1016/j.csbj.2025.06.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In 2025 alone, H5N1 avian influenza is responsible for thousands of infections across various animal species, including avian and mammalian livestock such as chickens and cows, and poses a threat to human health due to avian-to-mammalian transmission. There have been 70 human cases of H5N1 influenza in the United States since April 2024 and, as shown in recent studies, our current antibody defenses are waning. Thus, it is imperative to discover new therapeutics in the fight against more recent strains of the virus. In this study, we present the <i>Frankies</i> framework for automated antibody diffusion and assessment. This pipeline was used to automate the generation of 30 novel anti-HA1 Fv antibody fragment sequences, fold them into 3-dimensional structures, and then dock against a recent H5N1 HA1 antigen structure for binding evaluation. Here we show the utility of artificial intelligence in the discovery of novel antibodies against specific H5N1 strains of interest, which bind similarly to known therapeutic and elicited antibodies.</p>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"2915-2923\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12270607/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2025.06.026\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.06.026","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
In 2025 alone, H5N1 avian influenza is responsible for thousands of infections across various animal species, including avian and mammalian livestock such as chickens and cows, and poses a threat to human health due to avian-to-mammalian transmission. There have been 70 human cases of H5N1 influenza in the United States since April 2024 and, as shown in recent studies, our current antibody defenses are waning. Thus, it is imperative to discover new therapeutics in the fight against more recent strains of the virus. In this study, we present the Frankies framework for automated antibody diffusion and assessment. This pipeline was used to automate the generation of 30 novel anti-HA1 Fv antibody fragment sequences, fold them into 3-dimensional structures, and then dock against a recent H5N1 HA1 antigen structure for binding evaluation. Here we show the utility of artificial intelligence in the discovery of novel antibodies against specific H5N1 strains of interest, which bind similarly to known therapeutic and elicited antibodies.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology