{"title":"新型SARS-CoV-2包膜蛋白离子通道抑制剂的计算机检测。","authors":"Nina Kobe, Lennart Dreisewerd, Matic Pavlin, Polona Kogovšek, Črtomir Podlipnik, Uroš Grošelj, Miha Lukšič","doi":"10.1016/j.csbj.2025.06.036","DOIUrl":null,"url":null,"abstract":"<p><p>The SARS-CoV-2 envelope protein (2-E<sup>PRO</sup>), a viroporin crucial for viral pathogenesis, is a promising target for antiviral drug development as it is highly conserved and functionally important. Although it is a promising therapeutic target for the treatment of COVID-19, it has often been overlooked in previous studies. In this study, a high-throughput virtual screening of nearly one billion compounds was performed, followed by rigorous filtering and re-docking. Eight best-scoring and chemically versatile lead candidates were identified. In molecular dynamics simulations, three of these ligands showed stable protein-ligand complexes occupying the 2-E<sup>PRO</sup> channel pore. Among these, ZINC001799167680 (L3) and ZINC001081252239 (L2) exhibited the strongest binding affinity, with key interactions at residues ASN15, THR11 and GLU8 identified by Molecular Mechanics Poisson-Boltzmann Surface Area analysis. All ligands were compared with the known inhibitor rimantadine and showed stronger binding to the protein. These <i>in silico</i> results highlight the potential of focusing on the 2-E<sup>PRO</sup> ion channel in the development of novel COVID-19 therapeutics and pave the way for further <i>in vitro</i> and <i>in vivo</i> studies.</p>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"2823-2831"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12268682/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>In silico</i> determination of novel SARS-CoV-2 envelope protein ion channel inhibitors.\",\"authors\":\"Nina Kobe, Lennart Dreisewerd, Matic Pavlin, Polona Kogovšek, Črtomir Podlipnik, Uroš Grošelj, Miha Lukšič\",\"doi\":\"10.1016/j.csbj.2025.06.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The SARS-CoV-2 envelope protein (2-E<sup>PRO</sup>), a viroporin crucial for viral pathogenesis, is a promising target for antiviral drug development as it is highly conserved and functionally important. Although it is a promising therapeutic target for the treatment of COVID-19, it has often been overlooked in previous studies. In this study, a high-throughput virtual screening of nearly one billion compounds was performed, followed by rigorous filtering and re-docking. Eight best-scoring and chemically versatile lead candidates were identified. In molecular dynamics simulations, three of these ligands showed stable protein-ligand complexes occupying the 2-E<sup>PRO</sup> channel pore. Among these, ZINC001799167680 (L3) and ZINC001081252239 (L2) exhibited the strongest binding affinity, with key interactions at residues ASN15, THR11 and GLU8 identified by Molecular Mechanics Poisson-Boltzmann Surface Area analysis. All ligands were compared with the known inhibitor rimantadine and showed stronger binding to the protein. These <i>in silico</i> results highlight the potential of focusing on the 2-E<sup>PRO</sup> ion channel in the development of novel COVID-19 therapeutics and pave the way for further <i>in vitro</i> and <i>in vivo</i> studies.</p>\",\"PeriodicalId\":10715,\"journal\":{\"name\":\"Computational and structural biotechnology journal\",\"volume\":\"27 \",\"pages\":\"2823-2831\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12268682/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and structural biotechnology journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.csbj.2025.06.036\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.csbj.2025.06.036","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
In silico determination of novel SARS-CoV-2 envelope protein ion channel inhibitors.
The SARS-CoV-2 envelope protein (2-EPRO), a viroporin crucial for viral pathogenesis, is a promising target for antiviral drug development as it is highly conserved and functionally important. Although it is a promising therapeutic target for the treatment of COVID-19, it has often been overlooked in previous studies. In this study, a high-throughput virtual screening of nearly one billion compounds was performed, followed by rigorous filtering and re-docking. Eight best-scoring and chemically versatile lead candidates were identified. In molecular dynamics simulations, three of these ligands showed stable protein-ligand complexes occupying the 2-EPRO channel pore. Among these, ZINC001799167680 (L3) and ZINC001081252239 (L2) exhibited the strongest binding affinity, with key interactions at residues ASN15, THR11 and GLU8 identified by Molecular Mechanics Poisson-Boltzmann Surface Area analysis. All ligands were compared with the known inhibitor rimantadine and showed stronger binding to the protein. These in silico results highlight the potential of focusing on the 2-EPRO ion channel in the development of novel COVID-19 therapeutics and pave the way for further in vitro and in vivo studies.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology