Zhenxiong Zhang, Peiheng He, Li Yang, Jun Gong, Renyi Qin, Min Wang
{"title":"YAP/TAZ的翻译后修饰:分子机制和治疗机会。","authors":"Zhenxiong Zhang, Peiheng He, Li Yang, Jun Gong, Renyi Qin, Min Wang","doi":"10.1186/s11658-025-00760-4","DOIUrl":null,"url":null,"abstract":"<p><p>Yes-associated protein (YAP) and its paralog, transcriptional coactivator with PDZ-binding motif (TAZ), are critical effectors of the Hippo pathway, as well as other biochemical and biophysical signals. Through their interaction with DNA-binding partners, YAP/TAZ can modulate the transcription of many genes critical for organ size regulation and tissue homeostasis maintenance. Aberrant expression or activation of YAP/TAZ is implicated in the pathogenesis of many cancers and noncancerous diseases. Notably, their functional outputs demonstrate remarkable diversity, with context-dependent roles emerging across distinct disease models and tissue microenvironments. Posttranslational modifications (PTMs) exert profound impacts on the stability, subcellular localization, and function of YAP/TAZ. The canonical Hippo pathway-mediated phosphorylation and ubiquitination have been well characterized as mechanisms that downregulate YAP/TAZ stability and transcriptional activity. Recent studies have identified novel phosphorylation sites, atypical ubiquitination patterns, along with ubiquitin-like modifications, glycosylation, methylation, acetylation, and lactylation on YAP/TAZ. These PTMs exhibit dynamic regulation in response to microenvironmental stimuli, providing molecular insights into the context-dependent functional versatility of YAP/TAZ. This review systematically synthesizes current understanding of YAP/TAZ PTM networks and discusses their therapeutic implications.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"30 1","pages":"83"},"PeriodicalIF":10.2000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12273402/pdf/","citationCount":"0","resultStr":"{\"title\":\"Posttranslational modifications of YAP/TAZ: molecular mechanisms and therapeutic opportunities.\",\"authors\":\"Zhenxiong Zhang, Peiheng He, Li Yang, Jun Gong, Renyi Qin, Min Wang\",\"doi\":\"10.1186/s11658-025-00760-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Yes-associated protein (YAP) and its paralog, transcriptional coactivator with PDZ-binding motif (TAZ), are critical effectors of the Hippo pathway, as well as other biochemical and biophysical signals. Through their interaction with DNA-binding partners, YAP/TAZ can modulate the transcription of many genes critical for organ size regulation and tissue homeostasis maintenance. Aberrant expression or activation of YAP/TAZ is implicated in the pathogenesis of many cancers and noncancerous diseases. Notably, their functional outputs demonstrate remarkable diversity, with context-dependent roles emerging across distinct disease models and tissue microenvironments. Posttranslational modifications (PTMs) exert profound impacts on the stability, subcellular localization, and function of YAP/TAZ. The canonical Hippo pathway-mediated phosphorylation and ubiquitination have been well characterized as mechanisms that downregulate YAP/TAZ stability and transcriptional activity. Recent studies have identified novel phosphorylation sites, atypical ubiquitination patterns, along with ubiquitin-like modifications, glycosylation, methylation, acetylation, and lactylation on YAP/TAZ. These PTMs exhibit dynamic regulation in response to microenvironmental stimuli, providing molecular insights into the context-dependent functional versatility of YAP/TAZ. This review systematically synthesizes current understanding of YAP/TAZ PTM networks and discusses their therapeutic implications.</p>\",\"PeriodicalId\":9688,\"journal\":{\"name\":\"Cellular & Molecular Biology Letters\",\"volume\":\"30 1\",\"pages\":\"83\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12273402/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular & Molecular Biology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s11658-025-00760-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular & Molecular Biology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s11658-025-00760-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Posttranslational modifications of YAP/TAZ: molecular mechanisms and therapeutic opportunities.
Yes-associated protein (YAP) and its paralog, transcriptional coactivator with PDZ-binding motif (TAZ), are critical effectors of the Hippo pathway, as well as other biochemical and biophysical signals. Through their interaction with DNA-binding partners, YAP/TAZ can modulate the transcription of many genes critical for organ size regulation and tissue homeostasis maintenance. Aberrant expression or activation of YAP/TAZ is implicated in the pathogenesis of many cancers and noncancerous diseases. Notably, their functional outputs demonstrate remarkable diversity, with context-dependent roles emerging across distinct disease models and tissue microenvironments. Posttranslational modifications (PTMs) exert profound impacts on the stability, subcellular localization, and function of YAP/TAZ. The canonical Hippo pathway-mediated phosphorylation and ubiquitination have been well characterized as mechanisms that downregulate YAP/TAZ stability and transcriptional activity. Recent studies have identified novel phosphorylation sites, atypical ubiquitination patterns, along with ubiquitin-like modifications, glycosylation, methylation, acetylation, and lactylation on YAP/TAZ. These PTMs exhibit dynamic regulation in response to microenvironmental stimuli, providing molecular insights into the context-dependent functional versatility of YAP/TAZ. This review systematically synthesizes current understanding of YAP/TAZ PTM networks and discusses their therapeutic implications.
期刊介绍:
Cellular & Molecular Biology Letters is an international journal dedicated to the dissemination of fundamental knowledge in all areas of cellular and molecular biology, cancer cell biology, and certain aspects of biochemistry, biophysics and biotechnology.