低电动势驱动钠补偿优化可充电钠电池钠沉积。

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yu-Ying Zhang, Chao-Hui Zhang, Yu-Jie Guo, Xu-Sheng Zhang, Min Fan, Xin-Hai Meng, Xing Zhang, Yao Zhao, Fuyi Wang, Sen Xin, Yu-Guo Guo, Li-Jun Wan
{"title":"低电动势驱动钠补偿优化可充电钠电池钠沉积。","authors":"Yu-Ying Zhang, Chao-Hui Zhang, Yu-Jie Guo, Xu-Sheng Zhang, Min Fan, Xin-Hai Meng, Xing Zhang, Yao Zhao, Fuyi Wang, Sen Xin, Yu-Guo Guo, Li-Jun Wan","doi":"10.1021/jacs.5c06704","DOIUrl":null,"url":null,"abstract":"<p><p>Sufficient active Na<sup>+</sup> and stable electrode-electrolyte interfaces enable anode-free sodium batteries to achieve high energy densities and long operational lifespan. Here, we establish the critical role of low electromotive force (EMF) in promoting uniform Na deposition and stable interfacial chemistry by minimizing overpotential and mitigating steep concentration gradients. We accordingly designed a versatile cathode, Na-replenished P2-type oxides (NRP2), with reversible overstoichiometric Na-ion insertion that incorporates sodium compensation and promotes Na leveling deposition. By releasing the prestored Na-ions at a low voltage, the NRP2 cathode supplements the loss of active Na<sup>+</sup> during the initial formation of the solid electrolyte interphase (SEI). Simultaneously, it creates a low EMF to facilitate uniform and dense metal deposition at the anode surface. The deposited Na metal shows a regular two-dimensional polygonal morphology, in contrast to the dendritic morphology with the high EMF condition. As a result, the rechargeable Na-metal batteries that employ the NRP2-50 demonstrate a capacity retention of 90.1% after 500 cycles and capacity retention of 97.4% over 50 cycles in an anode-free geometry.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Electromotive Force-Driven Sodium Compensation for Optimizing Na Deposition in Rechargeable Sodium Batteries.\",\"authors\":\"Yu-Ying Zhang, Chao-Hui Zhang, Yu-Jie Guo, Xu-Sheng Zhang, Min Fan, Xin-Hai Meng, Xing Zhang, Yao Zhao, Fuyi Wang, Sen Xin, Yu-Guo Guo, Li-Jun Wan\",\"doi\":\"10.1021/jacs.5c06704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sufficient active Na<sup>+</sup> and stable electrode-electrolyte interfaces enable anode-free sodium batteries to achieve high energy densities and long operational lifespan. Here, we establish the critical role of low electromotive force (EMF) in promoting uniform Na deposition and stable interfacial chemistry by minimizing overpotential and mitigating steep concentration gradients. We accordingly designed a versatile cathode, Na-replenished P2-type oxides (NRP2), with reversible overstoichiometric Na-ion insertion that incorporates sodium compensation and promotes Na leveling deposition. By releasing the prestored Na-ions at a low voltage, the NRP2 cathode supplements the loss of active Na<sup>+</sup> during the initial formation of the solid electrolyte interphase (SEI). Simultaneously, it creates a low EMF to facilitate uniform and dense metal deposition at the anode surface. The deposited Na metal shows a regular two-dimensional polygonal morphology, in contrast to the dendritic morphology with the high EMF condition. As a result, the rechargeable Na-metal batteries that employ the NRP2-50 demonstrate a capacity retention of 90.1% after 500 cycles and capacity retention of 97.4% over 50 cycles in an anode-free geometry.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.5c06704\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c06704","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

充足的活性Na+和稳定的电极-电解质界面使无阳极钠电池能够实现高能量密度和长使用寿命。在这里,我们建立了低电动势(EMF)在促进均匀的Na沉积和稳定的界面化学中的关键作用,通过最小化过电位和减轻陡峭的浓度梯度。因此,我们设计了一种多功能阴极,钠补充的p2型氧化物(NRP2),具有可逆的超化学计量钠离子插入,结合钠补偿并促进钠流平沉积。通过在低电压下释放预先储存的Na-离子,NRP2阴极补充了固态电解质间相(SEI)初始形成过程中活性Na+的损失。同时,它产生一个低电动势,以促进均匀和致密的金属沉积在阳极表面。在高电动势条件下,沉积的Na金属呈现出规则的二维多边形形貌,而在高电动势条件下则呈现出树枝状形貌。因此,采用NRP2-50的可充电钠金属电池在500次循环后的容量保持率为90.1%,在无阳极几何结构中,50次循环后的容量保持率为97.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Electromotive Force-Driven Sodium Compensation for Optimizing Na Deposition in Rechargeable Sodium Batteries.

Sufficient active Na+ and stable electrode-electrolyte interfaces enable anode-free sodium batteries to achieve high energy densities and long operational lifespan. Here, we establish the critical role of low electromotive force (EMF) in promoting uniform Na deposition and stable interfacial chemistry by minimizing overpotential and mitigating steep concentration gradients. We accordingly designed a versatile cathode, Na-replenished P2-type oxides (NRP2), with reversible overstoichiometric Na-ion insertion that incorporates sodium compensation and promotes Na leveling deposition. By releasing the prestored Na-ions at a low voltage, the NRP2 cathode supplements the loss of active Na+ during the initial formation of the solid electrolyte interphase (SEI). Simultaneously, it creates a low EMF to facilitate uniform and dense metal deposition at the anode surface. The deposited Na metal shows a regular two-dimensional polygonal morphology, in contrast to the dendritic morphology with the high EMF condition. As a result, the rechargeable Na-metal batteries that employ the NRP2-50 demonstrate a capacity retention of 90.1% after 500 cycles and capacity retention of 97.4% over 50 cycles in an anode-free geometry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信