金属有机框架包封与传统过滤在海水环境DNA捕获中的比较

IF 6.2 Q1 Agricultural and Biological Sciences
Laura I. FitzGerald, Katrina M. West, Cara M. Doherty, Oliver F. Berry
{"title":"金属有机框架包封与传统过滤在海水环境DNA捕获中的比较","authors":"Laura I. FitzGerald,&nbsp;Katrina M. West,&nbsp;Cara M. Doherty,&nbsp;Oliver F. Berry","doi":"10.1002/edn3.70151","DOIUrl":null,"url":null,"abstract":"<p>Effective sample collection is a pivotal step in environmental DNA (eDNA) workflows. For aquatic eDNA applications, this typically requires water filtration and cold storage, which present logistical challenges in remote or resource-limited settings. Metal–organic frameworks (MOFs) are porous materials composed of metal ions coordinated with organic linkers that can form around biological molecules in solution. By directly encapsulating and preserving eDNA in situ within a collected water sample, MOFs may simplify field sampling without the need for specialized equipment. In this study, eDNA capture and preservation from seawater samples using the MOF Zeolitic Imidazolate Framework-8 (ZIF-8) was compared with the performance of conventional filtration through mixed cellulose ester (MCE) filters. ZIF-8 samples were stored at ambient temperature for 2 weeks, while MCE filters were either frozen or preserved in a lysis buffer for 5 days. The performance of each method was assessed by high-throughput DNA sequencing and a metabarcoding assay targeting the 16S rRNA gene of fish. The MCE filter method detected, at present, a greater number of fish amplicon sequence variants (ASVs) and taxa than our trial application of the MOF method. However, community composition analyses (PERMANOVA and NMDS ordination) revealed no significant differences between the methods, demonstrating that despite yielding lower DNA quantities, ZIF-8 collection effectively replicates the marine fish community structure. Analysis of taxon abundance showed that MOFs captured dominant taxa effectively but were less sensitive to rarer taxa. With further optimisation to enhance eDNA capture efficiency by MOFs beyond this trial application, MOFs could serve as a practical, field-friendly alternative for eDNA sampling, especially where filtration is difficult.</p>","PeriodicalId":52828,"journal":{"name":"Environmental DNA","volume":"7 4","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/edn3.70151","citationCount":"0","resultStr":"{\"title\":\"Comparing Metal–Organic Framework Encapsulation With Conventional Filtering for Environmental DNA Capture From Seawater\",\"authors\":\"Laura I. FitzGerald,&nbsp;Katrina M. West,&nbsp;Cara M. Doherty,&nbsp;Oliver F. Berry\",\"doi\":\"10.1002/edn3.70151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Effective sample collection is a pivotal step in environmental DNA (eDNA) workflows. For aquatic eDNA applications, this typically requires water filtration and cold storage, which present logistical challenges in remote or resource-limited settings. Metal–organic frameworks (MOFs) are porous materials composed of metal ions coordinated with organic linkers that can form around biological molecules in solution. By directly encapsulating and preserving eDNA in situ within a collected water sample, MOFs may simplify field sampling without the need for specialized equipment. In this study, eDNA capture and preservation from seawater samples using the MOF Zeolitic Imidazolate Framework-8 (ZIF-8) was compared with the performance of conventional filtration through mixed cellulose ester (MCE) filters. ZIF-8 samples were stored at ambient temperature for 2 weeks, while MCE filters were either frozen or preserved in a lysis buffer for 5 days. The performance of each method was assessed by high-throughput DNA sequencing and a metabarcoding assay targeting the 16S rRNA gene of fish. The MCE filter method detected, at present, a greater number of fish amplicon sequence variants (ASVs) and taxa than our trial application of the MOF method. However, community composition analyses (PERMANOVA and NMDS ordination) revealed no significant differences between the methods, demonstrating that despite yielding lower DNA quantities, ZIF-8 collection effectively replicates the marine fish community structure. Analysis of taxon abundance showed that MOFs captured dominant taxa effectively but were less sensitive to rarer taxa. With further optimisation to enhance eDNA capture efficiency by MOFs beyond this trial application, MOFs could serve as a practical, field-friendly alternative for eDNA sampling, especially where filtration is difficult.</p>\",\"PeriodicalId\":52828,\"journal\":{\"name\":\"Environmental DNA\",\"volume\":\"7 4\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/edn3.70151\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental DNA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/edn3.70151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental DNA","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/edn3.70151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

有效的样品采集是环境DNA (eDNA)工作流程中的关键步骤。对于水生eDNA应用,这通常需要水过滤和冷藏,这在偏远或资源有限的环境中提出了后勤挑战。金属-有机骨架(mof)是由金属离子与有机连接体配位组成的多孔材料,可在溶液中围绕生物分子形成。通过直接封装和保存eDNA在收集的水样中的原位,mof可以简化现场采样,而不需要专门的设备。在这项研究中,使用MOF沸石咪唑酸框架-8 (ZIF-8)从海水样品中捕获和保存eDNA与使用混合纤维素酯(MCE)过滤器的传统过滤性能进行了比较。ZIF-8样品在常温下保存2周,而MCE过滤器在裂解缓冲液中冷冻或保存5天。通过高通量DNA测序和针对鱼类16S rRNA基因的元条形码分析来评估每种方法的性能。目前,MCE滤波方法检测到的鱼类扩增子序列变异(asv)和分类群数量比我们试验应用的MOF方法要多。然而,群落组成分析(PERMANOVA和NMDS排序)显示两种方法之间没有显著差异,表明尽管产生较低的DNA量,但ZIF-8收集有效地复制了海洋鱼类的群落结构。分类群丰度分析表明,mof能有效捕获优势分类群,但对稀有分类群的敏感性较低。通过进一步优化以提高mof的eDNA捕获效率,mof可以作为一种实用的、现场友好的eDNA采样替代方案,特别是在过滤困难的地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Comparing Metal–Organic Framework Encapsulation With Conventional Filtering for Environmental DNA Capture From Seawater

Comparing Metal–Organic Framework Encapsulation With Conventional Filtering for Environmental DNA Capture From Seawater

Effective sample collection is a pivotal step in environmental DNA (eDNA) workflows. For aquatic eDNA applications, this typically requires water filtration and cold storage, which present logistical challenges in remote or resource-limited settings. Metal–organic frameworks (MOFs) are porous materials composed of metal ions coordinated with organic linkers that can form around biological molecules in solution. By directly encapsulating and preserving eDNA in situ within a collected water sample, MOFs may simplify field sampling without the need for specialized equipment. In this study, eDNA capture and preservation from seawater samples using the MOF Zeolitic Imidazolate Framework-8 (ZIF-8) was compared with the performance of conventional filtration through mixed cellulose ester (MCE) filters. ZIF-8 samples were stored at ambient temperature for 2 weeks, while MCE filters were either frozen or preserved in a lysis buffer for 5 days. The performance of each method was assessed by high-throughput DNA sequencing and a metabarcoding assay targeting the 16S rRNA gene of fish. The MCE filter method detected, at present, a greater number of fish amplicon sequence variants (ASVs) and taxa than our trial application of the MOF method. However, community composition analyses (PERMANOVA and NMDS ordination) revealed no significant differences between the methods, demonstrating that despite yielding lower DNA quantities, ZIF-8 collection effectively replicates the marine fish community structure. Analysis of taxon abundance showed that MOFs captured dominant taxa effectively but were less sensitive to rarer taxa. With further optimisation to enhance eDNA capture efficiency by MOFs beyond this trial application, MOFs could serve as a practical, field-friendly alternative for eDNA sampling, especially where filtration is difficult.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental DNA
Environmental DNA Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
11.00
自引率
0.00%
发文量
99
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信