{"title":"MaxGlaViT:一种基于眼底图像的轻型视觉转换器的青光眼早期诊断方法","authors":"Mustafa Yurdakul, Kübra Uyar, Şakir Taşdemir","doi":"10.1002/ima.70159","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Glaucoma is a prevalent eye disease that often progresses without symptoms and can lead to permanent vision loss if not detected early. The limited number of specialists and overcrowded clinics worldwide make it difficult to detect the disease at an early stage. Deep learning-based computer-aided diagnosis (CAD) systems are a solution to this problem, enabling faster and more accurate diagnosis. In this study, we proposed MaxGlaViT, a novel Vision Transformer model based on MaxViT to diagnose different stages of glaucoma. The architecture of the model is constructed in three steps: (i) the Multi Axis Vision Transformer (MaxViT) structure is scaled in terms of the number of blocks and channels, (ii) low-level feature extraction is improved by integrating the attention mechanism into the stem block, and (iii) high-level feature extraction is improved by using the modern convolutional structure. The MaxGlaViT model was tested on the HDV1 fundus image data set and compared to a total of 80 deep learning models. The results show that the MaxGlaViT model, which contains effective block structures, outperforms previous literature methods in terms of both parameter efficiency and classification accuracy. The model performs particularly high success in detecting the early stages of glaucoma. MaxGlaViT is an effective solution for multistage diagnosis of glaucoma with low computational cost and high accuracy. In this respect, it can be considered as a candidate for a scalable and reliable CAD system applicable in clinical settings.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MaxGlaViT: A Novel Lightweight Vision Transformer-Based Approach for Early Diagnosis of Glaucoma Stages From Fundus Images\",\"authors\":\"Mustafa Yurdakul, Kübra Uyar, Şakir Taşdemir\",\"doi\":\"10.1002/ima.70159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Glaucoma is a prevalent eye disease that often progresses without symptoms and can lead to permanent vision loss if not detected early. The limited number of specialists and overcrowded clinics worldwide make it difficult to detect the disease at an early stage. Deep learning-based computer-aided diagnosis (CAD) systems are a solution to this problem, enabling faster and more accurate diagnosis. In this study, we proposed MaxGlaViT, a novel Vision Transformer model based on MaxViT to diagnose different stages of glaucoma. The architecture of the model is constructed in three steps: (i) the Multi Axis Vision Transformer (MaxViT) structure is scaled in terms of the number of blocks and channels, (ii) low-level feature extraction is improved by integrating the attention mechanism into the stem block, and (iii) high-level feature extraction is improved by using the modern convolutional structure. The MaxGlaViT model was tested on the HDV1 fundus image data set and compared to a total of 80 deep learning models. The results show that the MaxGlaViT model, which contains effective block structures, outperforms previous literature methods in terms of both parameter efficiency and classification accuracy. The model performs particularly high success in detecting the early stages of glaucoma. MaxGlaViT is an effective solution for multistage diagnosis of glaucoma with low computational cost and high accuracy. In this respect, it can be considered as a candidate for a scalable and reliable CAD system applicable in clinical settings.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"35 4\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.70159\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70159","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
MaxGlaViT: A Novel Lightweight Vision Transformer-Based Approach for Early Diagnosis of Glaucoma Stages From Fundus Images
Glaucoma is a prevalent eye disease that often progresses without symptoms and can lead to permanent vision loss if not detected early. The limited number of specialists and overcrowded clinics worldwide make it difficult to detect the disease at an early stage. Deep learning-based computer-aided diagnosis (CAD) systems are a solution to this problem, enabling faster and more accurate diagnosis. In this study, we proposed MaxGlaViT, a novel Vision Transformer model based on MaxViT to diagnose different stages of glaucoma. The architecture of the model is constructed in three steps: (i) the Multi Axis Vision Transformer (MaxViT) structure is scaled in terms of the number of blocks and channels, (ii) low-level feature extraction is improved by integrating the attention mechanism into the stem block, and (iii) high-level feature extraction is improved by using the modern convolutional structure. The MaxGlaViT model was tested on the HDV1 fundus image data set and compared to a total of 80 deep learning models. The results show that the MaxGlaViT model, which contains effective block structures, outperforms previous literature methods in terms of both parameter efficiency and classification accuracy. The model performs particularly high success in detecting the early stages of glaucoma. MaxGlaViT is an effective solution for multistage diagnosis of glaucoma with low computational cost and high accuracy. In this respect, it can be considered as a candidate for a scalable and reliable CAD system applicable in clinical settings.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.