{"title":"基于注意力的多尺度CNN (AM-Net)在窄带成像中鉴别散发性结肠错构瘤和腺瘤","authors":"Aditi Jain, Saugata Sinha, Bhargava Chinni, Srijan Mazumdar","doi":"10.1002/ima.70168","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>There are no existing protocols for optical diagnosis of Sporadic colonic hamartomas, which are benign polyps, using the narrow-band imaging (NBI). Efficient detection of hamartoma polyps is difficult due to the similar appearances in NBI with other polyp types. Differentiating hamartoma from adenomatous is necessary for efficient utilization of “diagnose and leave” or “resect and discard” strategies during colonoscopy procedure. To address the above challenge, we conducted a study where suitably trained AI algorithms were employed for automatic differentiation of hamartoma and adenomatous polyps. An Attention based Multi-scale CNN (AM-Net), that integrates a Multi-scale Residual Network (MRN) with a parallel attention module (PAM) was introduced in this study. The Multi-scale Residual Network (MRN) structure enables the model to capture local multi-scale features while the attention module identifies “where to focus” and “what to focus on” through channel and spatial dimensional attention. To the best of our knowledge, AM-Net is the first AI-based model designed to differentiate colonic hamartomas from adenomatous polyps using NBI colonoscopy videos. In this study the performance of AM-Net was evaluated using a real-life colonoscopy polyp video comprising 1706 NBI polyp frames collected from 45 patients at a tertiary care hospital. The dataset includes 761 frames of hamartoma polyps and 945 frames of adenomatous polyps. The results demonstrated that efficient differentiation between hamartoma and adenomatous polyps is possible using a suitably designed and trained AI network. The proposed AM-Net achieved an accuracy of 86.97%, precision of 82.84%, F1-score of 87.75%, and AUC of 0.95, outperforming existing state-of-the-art CNN architectures and attention mechanisms across all metrics by effectively capturing structural details such as polyp mucosal patterns, textures, and boundaries, showcasing its ability to substantially enhance the accurate classification of hamartoma polyps.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentiating Sporadic Colonic Hamartoma From Adenomas in Narrow Band Imaging Using a Novel AI Network: Attention Based Multi-Scale CNN (AM-Net)\",\"authors\":\"Aditi Jain, Saugata Sinha, Bhargava Chinni, Srijan Mazumdar\",\"doi\":\"10.1002/ima.70168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>There are no existing protocols for optical diagnosis of Sporadic colonic hamartomas, which are benign polyps, using the narrow-band imaging (NBI). Efficient detection of hamartoma polyps is difficult due to the similar appearances in NBI with other polyp types. Differentiating hamartoma from adenomatous is necessary for efficient utilization of “diagnose and leave” or “resect and discard” strategies during colonoscopy procedure. To address the above challenge, we conducted a study where suitably trained AI algorithms were employed for automatic differentiation of hamartoma and adenomatous polyps. An Attention based Multi-scale CNN (AM-Net), that integrates a Multi-scale Residual Network (MRN) with a parallel attention module (PAM) was introduced in this study. The Multi-scale Residual Network (MRN) structure enables the model to capture local multi-scale features while the attention module identifies “where to focus” and “what to focus on” through channel and spatial dimensional attention. To the best of our knowledge, AM-Net is the first AI-based model designed to differentiate colonic hamartomas from adenomatous polyps using NBI colonoscopy videos. In this study the performance of AM-Net was evaluated using a real-life colonoscopy polyp video comprising 1706 NBI polyp frames collected from 45 patients at a tertiary care hospital. The dataset includes 761 frames of hamartoma polyps and 945 frames of adenomatous polyps. The results demonstrated that efficient differentiation between hamartoma and adenomatous polyps is possible using a suitably designed and trained AI network. The proposed AM-Net achieved an accuracy of 86.97%, precision of 82.84%, F1-score of 87.75%, and AUC of 0.95, outperforming existing state-of-the-art CNN architectures and attention mechanisms across all metrics by effectively capturing structural details such as polyp mucosal patterns, textures, and boundaries, showcasing its ability to substantially enhance the accurate classification of hamartoma polyps.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"35 4\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.70168\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70168","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Differentiating Sporadic Colonic Hamartoma From Adenomas in Narrow Band Imaging Using a Novel AI Network: Attention Based Multi-Scale CNN (AM-Net)
There are no existing protocols for optical diagnosis of Sporadic colonic hamartomas, which are benign polyps, using the narrow-band imaging (NBI). Efficient detection of hamartoma polyps is difficult due to the similar appearances in NBI with other polyp types. Differentiating hamartoma from adenomatous is necessary for efficient utilization of “diagnose and leave” or “resect and discard” strategies during colonoscopy procedure. To address the above challenge, we conducted a study where suitably trained AI algorithms were employed for automatic differentiation of hamartoma and adenomatous polyps. An Attention based Multi-scale CNN (AM-Net), that integrates a Multi-scale Residual Network (MRN) with a parallel attention module (PAM) was introduced in this study. The Multi-scale Residual Network (MRN) structure enables the model to capture local multi-scale features while the attention module identifies “where to focus” and “what to focus on” through channel and spatial dimensional attention. To the best of our knowledge, AM-Net is the first AI-based model designed to differentiate colonic hamartomas from adenomatous polyps using NBI colonoscopy videos. In this study the performance of AM-Net was evaluated using a real-life colonoscopy polyp video comprising 1706 NBI polyp frames collected from 45 patients at a tertiary care hospital. The dataset includes 761 frames of hamartoma polyps and 945 frames of adenomatous polyps. The results demonstrated that efficient differentiation between hamartoma and adenomatous polyps is possible using a suitably designed and trained AI network. The proposed AM-Net achieved an accuracy of 86.97%, precision of 82.84%, F1-score of 87.75%, and AUC of 0.95, outperforming existing state-of-the-art CNN architectures and attention mechanisms across all metrics by effectively capturing structural details such as polyp mucosal patterns, textures, and boundaries, showcasing its ability to substantially enhance the accurate classification of hamartoma polyps.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.