SMT-DL:一种基于字典学习的半监督多任务学习框架,用于鲁棒特征共享

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Bo Liu , Boxu Zhou , Yanshan Xiao , Zhitong Wang , Baoqing Li , Shengxin He , Chenlong Ye , Fan Cao
{"title":"SMT-DL:一种基于字典学习的半监督多任务学习框架,用于鲁棒特征共享","authors":"Bo Liu ,&nbsp;Boxu Zhou ,&nbsp;Yanshan Xiao ,&nbsp;Zhitong Wang ,&nbsp;Baoqing Li ,&nbsp;Shengxin He ,&nbsp;Chenlong Ye ,&nbsp;Fan Cao","doi":"10.1016/j.neucom.2025.130996","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-task learning (MTL) leverages shared representations across related tasks, facilitating the utilization of latent data information and enhancing classification performance. In complex learning scenarios, two major challenges frequently arise: limited labeled data and inefficient cross-task knowledge transfer. To address these issues, we propose a semi-supervised multi-task learning (SMT-DL) method based on dictionary learning. Specifically, we establish a dual dictionary architecture by innovatively combining dictionary learning with a multi-task coordination mechanism: (1) a semi-supervised synthetic dictionary that jointly reconstructs labeled and unlabeled data to capture potential cross-task features, and (2) an analytical dictionary that aligns sparse representations with discriminative decision boundaries. The framework incorporates three technical innovations: a block sparse regularization scheme that enforces feature sharing across tasks, a dual-space reconstruction mechanism that separates task-specific and shared representations, and a cross-task support vector synchronization strategy. In addition, we rigorously demonstrate the convergence of the proposed optimization algorithm. Extensive experimental results validate that the proposed SMT-DL approach outperforms existing methods in terms of robustness and classification performance.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"651 ","pages":"Article 130996"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SMT-DL: A semi-supervised multi-task learning framework based on dictionary learning for robust feature sharing\",\"authors\":\"Bo Liu ,&nbsp;Boxu Zhou ,&nbsp;Yanshan Xiao ,&nbsp;Zhitong Wang ,&nbsp;Baoqing Li ,&nbsp;Shengxin He ,&nbsp;Chenlong Ye ,&nbsp;Fan Cao\",\"doi\":\"10.1016/j.neucom.2025.130996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multi-task learning (MTL) leverages shared representations across related tasks, facilitating the utilization of latent data information and enhancing classification performance. In complex learning scenarios, two major challenges frequently arise: limited labeled data and inefficient cross-task knowledge transfer. To address these issues, we propose a semi-supervised multi-task learning (SMT-DL) method based on dictionary learning. Specifically, we establish a dual dictionary architecture by innovatively combining dictionary learning with a multi-task coordination mechanism: (1) a semi-supervised synthetic dictionary that jointly reconstructs labeled and unlabeled data to capture potential cross-task features, and (2) an analytical dictionary that aligns sparse representations with discriminative decision boundaries. The framework incorporates three technical innovations: a block sparse regularization scheme that enforces feature sharing across tasks, a dual-space reconstruction mechanism that separates task-specific and shared representations, and a cross-task support vector synchronization strategy. In addition, we rigorously demonstrate the convergence of the proposed optimization algorithm. Extensive experimental results validate that the proposed SMT-DL approach outperforms existing methods in terms of robustness and classification performance.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"651 \",\"pages\":\"Article 130996\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225016686\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225016686","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

多任务学习(Multi-task learning, MTL)利用相关任务之间的共享表示,促进了潜在数据信息的利用,提高了分类性能。在复杂的学习场景中,经常出现两大挑战:有限的标记数据和低效的跨任务知识转移。为了解决这些问题,我们提出了一种基于字典学习的半监督多任务学习(SMT-DL)方法。具体来说,我们通过创新地将字典学习与多任务协调机制相结合,建立了一个双字典架构:(1)一个半监督合成字典,它联合重建标记和未标记的数据,以捕获潜在的跨任务特征;(2)一个分析字典,它将稀疏表示与判别决策边界对齐。该框架包含三个技术创新:一个块稀疏正则化方案,强制跨任务共享特征;一个双空间重建机制,分离特定任务和共享表示;以及一个跨任务支持向量同步策略。此外,我们严格地证明了所提出的优化算法的收敛性。大量的实验结果验证了所提出的SMT-DL方法在鲁棒性和分类性能方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SMT-DL: A semi-supervised multi-task learning framework based on dictionary learning for robust feature sharing
Multi-task learning (MTL) leverages shared representations across related tasks, facilitating the utilization of latent data information and enhancing classification performance. In complex learning scenarios, two major challenges frequently arise: limited labeled data and inefficient cross-task knowledge transfer. To address these issues, we propose a semi-supervised multi-task learning (SMT-DL) method based on dictionary learning. Specifically, we establish a dual dictionary architecture by innovatively combining dictionary learning with a multi-task coordination mechanism: (1) a semi-supervised synthetic dictionary that jointly reconstructs labeled and unlabeled data to capture potential cross-task features, and (2) an analytical dictionary that aligns sparse representations with discriminative decision boundaries. The framework incorporates three technical innovations: a block sparse regularization scheme that enforces feature sharing across tasks, a dual-space reconstruction mechanism that separates task-specific and shared representations, and a cross-task support vector synchronization strategy. In addition, we rigorously demonstrate the convergence of the proposed optimization algorithm. Extensive experimental results validate that the proposed SMT-DL approach outperforms existing methods in terms of robustness and classification performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信