客户:用于多变量长期时间序列预测的交叉变量线性集成增强变压器

Jiaxin Gao , Wenbo Hu , Dongxiao Zhang , Yuntian Chen
{"title":"客户:用于多变量长期时间序列预测的交叉变量线性集成增强变压器","authors":"Jiaxin Gao ,&nbsp;Wenbo Hu ,&nbsp;Dongxiao Zhang ,&nbsp;Yuntian Chen","doi":"10.1016/j.aiopen.2025.06.001","DOIUrl":null,"url":null,"abstract":"<div><div>Long-term time series forecasting (LTSF) is crucial in modern society, playing a pivotal role in facilitating long-term planning and developing early warning systems. While many Transformer-based models have recently been introduced for LTSF, a doubt has been raised regarding the effectiveness of attention modules in capturing cross-time dependencies. In this study, we design a mask-series experiment to validate this assumption and subsequently propose the ”Cross-variable Linear Integrated ENhanced Transformer for Multivariate Long-Term Time Series Forecasting” (<em>Client</em>), an advanced model that outperforms both traditional Transformer-based models and linear models. <em>Client</em> employs the linear module to learn trend information and the enhanced Transformer module to capture cross-variable dependencies. Meanwhile, the cross-variable Transformer module in <em>Client</em> simplifies the embedding and position encoding layers and replaces the decoder module with a projection layer. Extensive experiments with nine real-world datasets have confirmed the SOTA performance of <em>Client</em> with the least computation time and memory consumption compared with the previous Transformer-based models. Our code is available at <span><span>https://github.com/daxin007/Client</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"6 ","pages":"Pages 93-107"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Client: Cross-variable linear integrated enhanced transformer for multivariate long-term time series forecasting\",\"authors\":\"Jiaxin Gao ,&nbsp;Wenbo Hu ,&nbsp;Dongxiao Zhang ,&nbsp;Yuntian Chen\",\"doi\":\"10.1016/j.aiopen.2025.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Long-term time series forecasting (LTSF) is crucial in modern society, playing a pivotal role in facilitating long-term planning and developing early warning systems. While many Transformer-based models have recently been introduced for LTSF, a doubt has been raised regarding the effectiveness of attention modules in capturing cross-time dependencies. In this study, we design a mask-series experiment to validate this assumption and subsequently propose the ”Cross-variable Linear Integrated ENhanced Transformer for Multivariate Long-Term Time Series Forecasting” (<em>Client</em>), an advanced model that outperforms both traditional Transformer-based models and linear models. <em>Client</em> employs the linear module to learn trend information and the enhanced Transformer module to capture cross-variable dependencies. Meanwhile, the cross-variable Transformer module in <em>Client</em> simplifies the embedding and position encoding layers and replaces the decoder module with a projection layer. Extensive experiments with nine real-world datasets have confirmed the SOTA performance of <em>Client</em> with the least computation time and memory consumption compared with the previous Transformer-based models. Our code is available at <span><span>https://github.com/daxin007/Client</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":100068,\"journal\":{\"name\":\"AI Open\",\"volume\":\"6 \",\"pages\":\"Pages 93-107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666651025000099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666651025000099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

长期时间序列预测(LTSF)在现代社会中至关重要,在促进长期规划和建立预警系统方面发挥着关键作用。虽然最近为LTSF引入了许多基于transformer的模型,但是对于注意力模块在捕获跨时间依赖性方面的有效性提出了疑问。在本研究中,我们设计了一个掩模系列实验来验证这一假设,并随后提出了“用于多元长期时间序列预测的交叉变量线性集成增强型变压器”(Client),这是一个优于传统基于变压器的模型和线性模型的先进模型。客户端使用线性模块来学习趋势信息,使用增强的Transformer模块来捕获跨变量依赖关系。同时,Client中的跨变量Transformer模块简化了嵌入层和位置编码层,并将解码器模块替换为投影层。在9个真实数据集上的大量实验证明,与之前基于transformer的模型相比,Client的SOTA性能具有最小的计算时间和内存消耗。我们的代码可在https://github.com/daxin007/Client上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Client: Cross-variable linear integrated enhanced transformer for multivariate long-term time series forecasting

Client: Cross-variable linear integrated enhanced transformer for multivariate long-term time series forecasting
Long-term time series forecasting (LTSF) is crucial in modern society, playing a pivotal role in facilitating long-term planning and developing early warning systems. While many Transformer-based models have recently been introduced for LTSF, a doubt has been raised regarding the effectiveness of attention modules in capturing cross-time dependencies. In this study, we design a mask-series experiment to validate this assumption and subsequently propose the ”Cross-variable Linear Integrated ENhanced Transformer for Multivariate Long-Term Time Series Forecasting” (Client), an advanced model that outperforms both traditional Transformer-based models and linear models. Client employs the linear module to learn trend information and the enhanced Transformer module to capture cross-variable dependencies. Meanwhile, the cross-variable Transformer module in Client simplifies the embedding and position encoding layers and replaces the decoder module with a projection layer. Extensive experiments with nine real-world datasets have confirmed the SOTA performance of Client with the least computation time and memory consumption compared with the previous Transformer-based models. Our code is available at https://github.com/daxin007/Client.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
45.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信