Jonghyeon Ko , Marco Comuzzi , Fabrizio Maria Maggi
{"title":"检测和修复业务流程事件日志中的异常模式","authors":"Jonghyeon Ko , Marco Comuzzi , Fabrizio Maria Maggi","doi":"10.1016/j.datak.2025.102488","DOIUrl":null,"url":null,"abstract":"<div><div>Event log anomaly detection and log repairing concern the identification of anomalous traces in an event log and the reconstruction of a correct trace for the anomalous ones, respectively. Trace-level anomalies in event logs often appear according to specific patterns, such events inserted, repeated, or skipped. This paper proposes P-BEAR (Pattern-Based Event Log Anomaly Reconstruction), a semi-supervised pattern-based anomaly detection and log repairing approach that exploits the pattern-based nature of trace-level anomalies in event logs. P-BEAR captures, in a set of ad-hoc graphs, the behaviour of clean traces in a log and uses these to identify anomalous traces, determine the specific anomaly pattern that applies to them, and then reconstruct the correct trace. The proposed approach is evaluated using artificial and real event logs against traditional trace alignment in conformance checking, the edit distance-based alignment method, and an unsupervised method based on deep learning. Overall, the proposed method outperforms the alignment method in anomalous trace reconstruction while providing interpretability with respect to anomaly pattern classification. P-BEAR is also quicker to execute, and its performance is more balanced across different types of anomaly patterns.</div></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"160 ","pages":"Article 102488"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting and repairing anomaly patterns in business process event logs\",\"authors\":\"Jonghyeon Ko , Marco Comuzzi , Fabrizio Maria Maggi\",\"doi\":\"10.1016/j.datak.2025.102488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Event log anomaly detection and log repairing concern the identification of anomalous traces in an event log and the reconstruction of a correct trace for the anomalous ones, respectively. Trace-level anomalies in event logs often appear according to specific patterns, such events inserted, repeated, or skipped. This paper proposes P-BEAR (Pattern-Based Event Log Anomaly Reconstruction), a semi-supervised pattern-based anomaly detection and log repairing approach that exploits the pattern-based nature of trace-level anomalies in event logs. P-BEAR captures, in a set of ad-hoc graphs, the behaviour of clean traces in a log and uses these to identify anomalous traces, determine the specific anomaly pattern that applies to them, and then reconstruct the correct trace. The proposed approach is evaluated using artificial and real event logs against traditional trace alignment in conformance checking, the edit distance-based alignment method, and an unsupervised method based on deep learning. Overall, the proposed method outperforms the alignment method in anomalous trace reconstruction while providing interpretability with respect to anomaly pattern classification. P-BEAR is also quicker to execute, and its performance is more balanced across different types of anomaly patterns.</div></div>\",\"PeriodicalId\":55184,\"journal\":{\"name\":\"Data & Knowledge Engineering\",\"volume\":\"160 \",\"pages\":\"Article 102488\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data & Knowledge Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169023X25000837\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X25000837","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Detecting and repairing anomaly patterns in business process event logs
Event log anomaly detection and log repairing concern the identification of anomalous traces in an event log and the reconstruction of a correct trace for the anomalous ones, respectively. Trace-level anomalies in event logs often appear according to specific patterns, such events inserted, repeated, or skipped. This paper proposes P-BEAR (Pattern-Based Event Log Anomaly Reconstruction), a semi-supervised pattern-based anomaly detection and log repairing approach that exploits the pattern-based nature of trace-level anomalies in event logs. P-BEAR captures, in a set of ad-hoc graphs, the behaviour of clean traces in a log and uses these to identify anomalous traces, determine the specific anomaly pattern that applies to them, and then reconstruct the correct trace. The proposed approach is evaluated using artificial and real event logs against traditional trace alignment in conformance checking, the edit distance-based alignment method, and an unsupervised method based on deep learning. Overall, the proposed method outperforms the alignment method in anomalous trace reconstruction while providing interpretability with respect to anomaly pattern classification. P-BEAR is also quicker to execute, and its performance is more balanced across different types of anomaly patterns.
期刊介绍:
Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.